PLANETOIDS | Formation of planetary building blocks throughout time and space

Summary
The major objective of the PLANETOIDS project is to profoundly advance our understanding of planet formation. Numerous discoveries of exoplanets in the last years proved that planet formation is a rule rather than an exception. At the same time, we made unprecedented progress in observations of the birthplaces of planets, the disks surrounding young stars, where dust growth up to pebble-sizes is detected. Despite the significant progress, the planet formation process remains a conundrum as its intermediate stages are essentially unobservable. This project aims at constructing innovative numerical models of the early stages of planet formation when the dust grows to pebbles and becomes gravitationally bound in building blocks of planets called planetesimals. Despite the critical role of this phase in the planet formation process, global models addressing planetesimal formation are scarce. With PLANETOIDS, I propose to go beyond the state-of-the-art by combining the most advanced models of circumstellar disk formation and structure, dust evolution, planetesimal formation, and planetesimal growth in one comprehensive framework. The key aspects included in PLANETOIDS are: 1) investigating how dust grows and circulates in wind-driven circumstellar disks, 2) understanding where, when, and how many planetesimals can emerge and how this result depends on the properties and environment of the host star, 3) exploring the pathways of fast planet formation required to explain the observations of young circumstellar disks. With these developments, it will become possible to self-consistently simulate the decisive early stages of planet formation for the first time. The awaited results are essential for explaining the origin of the Solar System and the diversity of exoplanets.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101040037
Start date: 01-09-2022
End date: 31-08-2027
Total budget - Public funding: 1 447 091,25 Euro - 1 447 091,00 Euro
Cordis data

Original description

The major objective of the PLANETOIDS project is to profoundly advance our understanding of planet formation. Numerous discoveries of exoplanets in the last years proved that planet formation is a rule rather than an exception. At the same time, we made unprecedented progress in observations of the birthplaces of planets, the disks surrounding young stars, where dust growth up to pebble-sizes is detected. Despite the significant progress, the planet formation process remains a conundrum as its intermediate stages are essentially unobservable. This project aims at constructing innovative numerical models of the early stages of planet formation when the dust grows to pebbles and becomes gravitationally bound in building blocks of planets called planetesimals. Despite the critical role of this phase in the planet formation process, global models addressing planetesimal formation are scarce. With PLANETOIDS, I propose to go beyond the state-of-the-art by combining the most advanced models of circumstellar disk formation and structure, dust evolution, planetesimal formation, and planetesimal growth in one comprehensive framework. The key aspects included in PLANETOIDS are: 1) investigating how dust grows and circulates in wind-driven circumstellar disks, 2) understanding where, when, and how many planetesimals can emerge and how this result depends on the properties and environment of the host star, 3) exploring the pathways of fast planet formation required to explain the observations of young circumstellar disks. With these developments, it will become possible to self-consistently simulate the decisive early stages of planet formation for the first time. The awaited results are essential for explaining the origin of the Solar System and the diversity of exoplanets.

Status

SIGNED

Call topic

ERC-2021-STG

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2021-STG ERC STARTING GRANTS
HORIZON.1.1.1 Frontier science
ERC-2021-STG ERC STARTING GRANTS