DEVENDRA | Deciphering the Effect of Vegetation and Erosion on basalt and carbonate weathering by Novel Denudation Rate Approaches

Summary
The chemical weathering of rocks on the Earth’s surface draws down atmospheric CO2, balancing emissions from volcanoes and maintaining habitable temperatures. Basalt and carbonate rocks are particularly crucial in this balance, because they are efficiently weathered: as estimated from studies of the dissolved elements in rivers, basalt accounts for 20-35% of modern global silicate weathering and CO2 consumption flux, despite only covering 5% of Earth’s surface. To formulate sensitivities and feedbacks between weathering of these rocks and climate, we need an accurate description of the exact processes that drive the conversion of rock to soil by weathering. Besides water flow, erosion rate and vegetation are thought to exercise significant control. Currently, however, we lack the tools needed to decipher these controls, because the preferred approach used to quantify erosion and weathering rates – cosmogenic nuclides, produced in situ in quartz – does not work in basalt and carbonate lithologies. The aim of DEVENDRA, dedicated to the pioneer of cosmogenic nuclide geochemistry Devendra Lal (1920 – 2012), is to eliminate this blind spot using a novel method never applied to basalt and carbonate lithologies: the ratio of cosmogenic beryllium-10 rained out from the atmosphere to stable beryllium-9 released by weathering. DEVENDRA will develop this system as a novel erosion and weathering rate meter for these rocks, and will use this new method to calibrate – using globally-distributed soil profiles and catchments of differing climate and erosion rate – the laws that govern weathering and CO2 drawdown in these rocks. The outcomes from DEVENDRA will refine the global weathering models that are used to understand Earth’s carbon cycle on geological time scales, to predict the trajectory of anthropogenic CO2 in coming centuries, and to estimate the potential for negative CO2 emissions by artificially-enhanced weathering of basalts.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101055263
Start date: 01-04-2023
End date: 31-03-2028
Total budget - Public funding: 2 277 587,50 Euro - 2 277 587,00 Euro
Cordis data

Original description

The chemical weathering of rocks on the Earth’s surface draws down atmospheric CO2, balancing emissions from volcanoes and maintaining habitable temperatures. Basalt and carbonate rocks are particularly crucial in this balance, because they are efficiently weathered: as estimated from studies of the dissolved elements in rivers, basalt accounts for 20-35% of modern global silicate weathering and CO2 consumption flux, despite only covering 5% of Earth’s surface. To formulate sensitivities and feedbacks between weathering of these rocks and climate, we need an accurate description of the exact processes that drive the conversion of rock to soil by weathering. Besides water flow, erosion rate and vegetation are thought to exercise significant control. Currently, however, we lack the tools needed to decipher these controls, because the preferred approach used to quantify erosion and weathering rates – cosmogenic nuclides, produced in situ in quartz – does not work in basalt and carbonate lithologies. The aim of DEVENDRA, dedicated to the pioneer of cosmogenic nuclide geochemistry Devendra Lal (1920 – 2012), is to eliminate this blind spot using a novel method never applied to basalt and carbonate lithologies: the ratio of cosmogenic beryllium-10 rained out from the atmosphere to stable beryllium-9 released by weathering. DEVENDRA will develop this system as a novel erosion and weathering rate meter for these rocks, and will use this new method to calibrate – using globally-distributed soil profiles and catchments of differing climate and erosion rate – the laws that govern weathering and CO2 drawdown in these rocks. The outcomes from DEVENDRA will refine the global weathering models that are used to understand Earth’s carbon cycle on geological time scales, to predict the trajectory of anthropogenic CO2 in coming centuries, and to estimate the potential for negative CO2 emissions by artificially-enhanced weathering of basalts.

Status

SIGNED

Call topic

ERC-2021-ADG

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2021-ADG ERC ADVANCED GRANTS
HORIZON.1.1.1 Frontier science
ERC-2021-ADG ERC ADVANCED GRANTS