Summary
The aim of PHOENIX is to use my expertise in microsystems engineering to close critical technology gaps in organoid generation. Cerebral organoids are 3D self-assembled structures derived from human induced pluripotent stem cells, replicating both structure and function of the human foetal brain. Organoids have the potential to replace existing 2D cell cultures and animal models, but this has not yet been realised due to rudimentary preparation methods.
In PHOENIX, three important technology gaps will be addressed: reproducibility, controlled maturation and vascularisation. I aim to build on my pioneering research on droplet acoustofluidics and the scientific output of my ERC Starting Grant to develop three microfluidic modules that at the end of the project shall be integrated into a seamless organoid engineering pipeline. The technology in focus is acoustophoresis, a method to manipulate particles and cells by ultrasound. This will be used to achieve ordered encapsulation of stem cells in hydrogel droplets and develop a microfluidic platform where the cells can be differentiated under fully controlled conditions. Finally, two-photon writing will be used to integrate a vascular network with the organoid constructs to form an important delivery architecture for nutrients and blood components. PHOENIX will be focused on both technology development and thorough biological characterisation of the resulting organoids to demonstrate both expected, and unexpected, benefits of transferring organoid generation on-chip.
Collaborations have been established with Prof. Christine Mummery and Dr. Valeria Orlova, both at LUMC, NL as well as Dr. Anna Falk at KI, SE to provide expertise in complementary fields of this highly interdisciplinary project. The expected output of PHOENIX is a microfluidic technology that enables high-throughput generation of cerebral organoid with a multi-regional structure and vascularisation in a direct process.
In PHOENIX, three important technology gaps will be addressed: reproducibility, controlled maturation and vascularisation. I aim to build on my pioneering research on droplet acoustofluidics and the scientific output of my ERC Starting Grant to develop three microfluidic modules that at the end of the project shall be integrated into a seamless organoid engineering pipeline. The technology in focus is acoustophoresis, a method to manipulate particles and cells by ultrasound. This will be used to achieve ordered encapsulation of stem cells in hydrogel droplets and develop a microfluidic platform where the cells can be differentiated under fully controlled conditions. Finally, two-photon writing will be used to integrate a vascular network with the organoid constructs to form an important delivery architecture for nutrients and blood components. PHOENIX will be focused on both technology development and thorough biological characterisation of the resulting organoids to demonstrate both expected, and unexpected, benefits of transferring organoid generation on-chip.
Collaborations have been established with Prof. Christine Mummery and Dr. Valeria Orlova, both at LUMC, NL as well as Dr. Anna Falk at KI, SE to provide expertise in complementary fields of this highly interdisciplinary project. The expected output of PHOENIX is a microfluidic technology that enables high-throughput generation of cerebral organoid with a multi-regional structure and vascularisation in a direct process.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101043985 |
Start date: | 01-04-2023 |
End date: | 31-03-2028 |
Total budget - Public funding: | 2 832 500,00 Euro - 2 832 500,00 Euro |
Cordis data
Original description
The aim of PHOENIX is to use my expertise in microsystems engineering to close critical technology gaps in organoid generation. Cerebral organoids are 3D self-assembled structures derived from human induced pluripotent stem cells, replicating both structure and function of the human foetal brain. Organoids have the potential to replace existing 2D cell cultures and animal models, but this has not yet been realised due to rudimentary preparation methods.In PHOENIX, three important technology gaps will be addressed: reproducibility, controlled maturation and vascularisation. I aim to build on my pioneering research on droplet acoustofluidics and the scientific output of my ERC Starting Grant to develop three microfluidic modules that at the end of the project shall be integrated into a seamless organoid engineering pipeline. The technology in focus is acoustophoresis, a method to manipulate particles and cells by ultrasound. This will be used to achieve ordered encapsulation of stem cells in hydrogel droplets and develop a microfluidic platform where the cells can be differentiated under fully controlled conditions. Finally, two-photon writing will be used to integrate a vascular network with the organoid constructs to form an important delivery architecture for nutrients and blood components. PHOENIX will be focused on both technology development and thorough biological characterisation of the resulting organoids to demonstrate both expected, and unexpected, benefits of transferring organoid generation on-chip.
Collaborations have been established with Prof. Christine Mummery and Dr. Valeria Orlova, both at LUMC, NL as well as Dr. Anna Falk at KI, SE to provide expertise in complementary fields of this highly interdisciplinary project. The expected output of PHOENIX is a microfluidic technology that enables high-throughput generation of cerebral organoid with a multi-regional structure and vascularisation in a direct process.
Status
SIGNEDCall topic
ERC-2021-COGUpdate Date
09-02-2023
Images
No images available.
Geographical location(s)