Light-Dark | Light Dark Matter: New Directions for Theory and Detection

Summary
Dark matter is one of the biggest mysteries of the universe, yet its particle identity is unknown. This proposal focuses on light dark matter (LDM), with mass below a GeV. In Light-Dark, I will pursue two intrinsically complementary directions: (I) I will explore novel theoretical frameworks for LDM; and (II) I will develop new theoretical concepts to directly detect it in the laboratory. This pioneering theory work will lay the foundation for future experimental realizations and is crucial in the quest to unearth the identity of dark matter. I will carry out a comprehensive research program designed to tackle these challenges, and I believe that I am uniquely positioned to do so. Regarding (I), the wealth of annihilation channels, scattering processes, self-interactions, decay modes and mass splittings opens up a host of possible frameworks to set the LDM abundance, which I will explore. I have already proposed a paradigm-shifting idea in the form of the Strongly Interacting Massive Particle (SIMP) mechanism, which, along with other new ideas for LDM, will be thoroughly studied. Regarding (II), the study of novel target materials for LDM, sensitive sensors, collective excitations, detection philosophies and the interplay between them is crucially still in its infancy. I will explore new theoretical concepts and synergies in these experimental aspects, including the use of superconducting nanowires, microwave kinetic inductance devices, 2D layered materials, ferroelectrics and directionality, with prospects to detect LDM orders of magnitude beyond current abilities, down to the meV scale. Proof-of-principle has already been established for nanowires, where, using data from a tiny prototype device, I have already broken new ground in LDM parameter space. The innovative theoretical approaches presented here open up an exciting and groundbreaking ?eld of research. The proposed investigations are both timely and essential, paving the way towards a dark matter discovery.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101040019
Start date: 01-05-2022
End date: 30-04-2027
Total budget - Public funding: 1 500 000,00 Euro - 1 500 000,00 Euro
Cordis data

Original description

Dark matter is one of the biggest mysteries of the universe, yet its particle identity is unknown. This proposal focuses on light dark matter (LDM), with mass below a GeV. In Light-Dark, I will pursue two intrinsically complementary directions: (I) I will explore novel theoretical frameworks for LDM; and (II) I will develop new theoretical concepts to directly detect it in the laboratory. This pioneering theory work will lay the foundation for future experimental realizations and is crucial in the quest to unearth the identity of dark matter. I will carry out a comprehensive research program designed to tackle these challenges, and I believe that I am uniquely positioned to do so. Regarding (I), the wealth of annihilation channels, scattering processes, self-interactions, decay modes and mass splittings opens up a host of possible frameworks to set the LDM abundance, which I will explore. I have already proposed a paradigm-shifting idea in the form of the Strongly Interacting Massive Particle (SIMP) mechanism, which, along with other new ideas for LDM, will be thoroughly studied. Regarding (II), the study of novel target materials for LDM, sensitive sensors, collective excitations, detection philosophies and the interplay between them is crucially still in its infancy. I will explore new theoretical concepts and synergies in these experimental aspects, including the use of superconducting nanowires, microwave kinetic inductance devices, 2D layered materials, ferroelectrics and directionality, with prospects to detect LDM orders of magnitude beyond current abilities, down to the meV scale. Proof-of-principle has already been established for nanowires, where, using data from a tiny prototype device, I have already broken new ground in LDM parameter space. The innovative theoretical approaches presented here open up an exciting and groundbreaking ?eld of research. The proposed investigations are both timely and essential, paving the way towards a dark matter discovery.

Status

SIGNED

Call topic

ERC-2021-STG

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2021-STG ERC STARTING GRANTS
HORIZON.1.1.1 Frontier science
ERC-2021-STG ERC STARTING GRANTS