CORSAIR | Controlled subradiance in atomic arrays

Summary
In the CORSAIR project, I propose to study and control subradiance, namely the suppression of collective spontaneous emission, in sub-wavelength arrays of two-level atoms, using a new atomic physics platform. Understanding and controlling how an ensemble of quantum emitters collectively emits or absorbs light is vital in several areas of science and technology. However, the description of this problem is a challenge since it amounts to a dissipative quantum many-body problem. This is why I propose to develop a new experimental research direction towards the following specific objectives: (i) The building of an experimental platform able to create ordered 1D and 2D arrays of atoms with sub-wavelength spacing, and high-fidelity detection of excitations in the arrays. (ii) The selective excitation of subradiant excitations, i.e., where collective spontaneous emission is strongly suppressed. I will develop an addressing scheme to populate a subradiant state with high fidelity and perform experiments demonstrating tailored light storage and retrieval, and metrological enhancement by subradiance. (iii) The understanding of how atomic correlations can be dissipatively engineered via subradiance. I will strive to observe the fermionic correlations that are predicted to emerge from collective decay in arrays, and I will map the phase diagram of a driven two-level atomic array. These objectives will be reached by developing dedicated new tools. I will use dysprosium, an atomic species with properties that allow novel cooling and trapping schemes that I propose to use. In the rich spectrum of Dy, I will isolate a two-level system with a narrow linewidth. I will further develop a novel addressing tool, that allows to drive an array with an alternating phase profile which directly excites a subradiant excitation. I will rely on a broad transition to perform time- and position-resolved high-fidelity measurements of excitations and correlations in the two-level arrays.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101039361
Start date: 01-09-2022
End date: 31-08-2027
Total budget - Public funding: 1 497 378,00 Euro - 1 497 378,00 Euro
Cordis data

Original description

In the CORSAIR project, I propose to study and control subradiance, namely the suppression of collective spontaneous emission, in sub-wavelength arrays of two-level atoms, using a new atomic physics platform. Understanding and controlling how an ensemble of quantum emitters collectively emits or absorbs light is vital in several areas of science and technology. However, the description of this problem is a challenge since it amounts to a dissipative quantum many-body problem. This is why I propose to develop a new experimental research direction towards the following specific objectives: (i) The building of an experimental platform able to create ordered 1D and 2D arrays of atoms with sub-wavelength spacing, and high-fidelity detection of excitations in the arrays. (ii) The selective excitation of subradiant excitations, i.e., where collective spontaneous emission is strongly suppressed. I will develop an addressing scheme to populate a subradiant state with high fidelity and perform experiments demonstrating tailored light storage and retrieval, and metrological enhancement by subradiance. (iii) The understanding of how atomic correlations can be dissipatively engineered via subradiance. I will strive to observe the fermionic correlations that are predicted to emerge from collective decay in arrays, and I will map the phase diagram of a driven two-level atomic array. These objectives will be reached by developing dedicated new tools. I will use dysprosium, an atomic species with properties that allow novel cooling and trapping schemes that I propose to use. In the rich spectrum of Dy, I will isolate a two-level system with a narrow linewidth. I will further develop a novel addressing tool, that allows to drive an array with an alternating phase profile which directly excites a subradiant excitation. I will rely on a broad transition to perform time- and position-resolved high-fidelity measurements of excitations and correlations in the two-level arrays.

Status

SIGNED

Call topic

ERC-2021-STG

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2021-STG ERC STARTING GRANTS
HORIZON.1.1.1 Frontier science
ERC-2021-STG ERC STARTING GRANTS