BREPOCI | The brain erythropoietin cycle as driver of adaptive neuroplasticity via functional hypoxia

Summary
Cognitive disability and decline play key roles in neuropsychiatric conditions but lack effective therapies. Erythropoietin (EPO) is a hypoxia-inducible growth factor, named after its original description in erythropoiesis. We discovered - by 'reverse approach' (human trials first) - that recombinant human (rh) EPO has potent procognitive effects, hematopoiesis-independent. Searching for mechanistic insight in mice, we saw that rhEPO markedly drives differentiation/maturation of pyramidal neurons and oligodendrocytes from non-dividing precursors in cornu ammonis, outside known neurogenesis areas. In parallel, rhEPO dampens microglia. This suggests that endogenous, brain-expressed EPO (bEPO), acting in auto/paracrine fashion, has fundamental, hitherto overlooked physiological significance.
BREPOCI will pursue the groundbreaking hypotheses that (I) 'functional hypoxia' is a physiological consequence of increased neuronal activity, inciting an integrated response of many brain cell types and (II) this activity-induced hypoxia stimulates bEPO expression to optimize multicellular brain plasticity, providing substantial 'hardware upgrade'. (III) Also, BREPOCI postulates diverse EPOR in brain and will study their nature and contribution to these pivotal processes upon normoxia, 'functional', and inspiratory hypoxia. (IV) rhEPO treatment of intellectual disability/autism caused by Tbr1 or Zbtb20 loss-of-function mutations will constitute a first mechanistic approach to specific brain pathologies, translatable to humans.
This ERC project can build on acquired novel genetic mouse tools (cell-type specific EPO/EPOR mutants, inducible hypoxia reporters, multiomic mice), sophisticated behavior tests, MRI/MRS, multiphoton imaging, NanoSIMS, sc/snRNA-seq, confocal/Lightsheet/electron microscopy, electrophysiology. BREPOCI will illuminate rhEPO/bEPO effects on physiological brain functions and explore how it limits developmental delay, intellectual disability, or neurodegeneration.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101054369
Start date: 01-09-2022
End date: 31-03-2028
Total budget - Public funding: 2 495 594,00 Euro - 2 495 594,00 Euro
Cordis data

Original description

Cognitive disability and decline play key roles in neuropsychiatric conditions but lack effective therapies. Erythropoietin (EPO) is a hypoxia-inducible growth factor, named after its original description in erythropoiesis. We discovered - by 'reverse approach' (human trials first) - that recombinant human (rh) EPO has potent procognitive effects, hematopoiesis-independent. Searching for mechanistic insight in mice, we saw that rhEPO markedly drives differentiation/maturation of pyramidal neurons and oligodendrocytes from non-dividing precursors in cornu ammonis, outside known neurogenesis areas. In parallel, rhEPO dampens microglia. This suggests that endogenous, brain-expressed EPO (bEPO), acting in auto/paracrine fashion, has fundamental, hitherto overlooked physiological significance.
BREPOCI will pursue the groundbreaking hypotheses that (I) 'functional hypoxia' is a physiological consequence of increased neuronal activity, inciting an integrated response of many brain cell types and (II) this activity-induced hypoxia stimulates bEPO expression to optimize multicellular brain plasticity, providing substantial 'hardware upgrade'. (III) Also, BREPOCI postulates diverse EPOR in brain and will study their nature and contribution to these pivotal processes upon normoxia, 'functional', and inspiratory hypoxia. (IV) rhEPO treatment of intellectual disability/autism caused by Tbr1 or Zbtb20 loss-of-function mutations will constitute a first mechanistic approach to specific brain pathologies, translatable to humans.
This ERC project can build on acquired novel genetic mouse tools (cell-type specific EPO/EPOR mutants, inducible hypoxia reporters, multiomic mice), sophisticated behavior tests, MRI/MRS, multiphoton imaging, NanoSIMS, sc/snRNA-seq, confocal/Lightsheet/electron microscopy, electrophysiology. BREPOCI will illuminate rhEPO/bEPO effects on physiological brain functions and explore how it limits developmental delay, intellectual disability, or neurodegeneration.

Status

SIGNED

Call topic

ERC-2021-ADG

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2021-ADG ERC ADVANCED GRANTS
HORIZON.1.1.1 Frontier science
ERC-2021-ADG ERC ADVANCED GRANTS