AFarCloud | Aggregate Farming in the Cloud

Summary

Farming is facing many economic challenges in terms of productivity and cost-effectiveness, as well as an increasing labour shortage partly due to depopulation of rural areas. Furthermore, reliable detection, accurate identification and proper quantification of pathogens and other factors affecting both plant and animal health, are critical to be kept under control in order to reduce economic expenditures, trade disruptions and even human health risks.

AFarCloud will provide a distributed platform for autonomous farming that will allow the integration and cooperation of agriculture Cyber Physical Systems in real-time in order to increase efficiency, productivity, animal health, food quality and reduce farm labour costs. This platform will be integrated with farm management software and will support monitoring and decision-making solutions based on big data and real time data mining techniques.
The AFarCloud project also aims to make farming robots accessible to more users by enabling farming vehicles to work in a cooperative mesh, thus opening up new applications and ensuring re-usability, as heterogeneous standard vehicles can combine their capabilities in order to lift farmer revenue and reduce labour costs.

The achievements from AFarCloud will be demonstrated in 3 holistic demonstrators (Finland, Spain and Italy), including cropping and livestock management scenarios and 8 local demonstrators (Latvia, Sweden, Spain and Czech Republic) in order to test specific functionalities and validate project results in relevant environments located in different European regions.

AFarCloud outcomes will strengthen partners’ market position boosting their innovation capacity and addressing industrial needs both at EU and international levels. The consortium represents the whole ICT-based farming solutions’ value chain, including all key actors needed for the development, demonstration and future market uptake of the precision farming framework targeted in the project.

Unfold all
/
Fold all
More information & hyperlinks
Web resources: http://www.afarcloud.eu/
https://cordis.europa.eu/project/id/783221
Start date: 01-09-2020
End date: 30-11-2021
Total budget - Public funding: 28 125 391,00 Euro - 8 658 353,00 Euro
Twitter: @AfarCloud
Cordis data

Original description

Farming is facing many economic challenges in terms of productivity and cost-effectiveness, as well as an increasing labour shortage partly due to depopulation of rural areas. Furthermore, reliable detection, accurate identification and proper quantification of pathogens and other factors affecting both plant and animal health, are critical to be kept under control in order to reduce economic expenditures, trade disruptions and even human health risks.
AFarCloud will provide a distributed platform for autonomous farming that will allow the integration and cooperation of agriculture Cyber Physical Systems in real-time in order to increase efficiency, productivity, animal health, food quality and reduce farm labour costs. This platform will be integrated with farm management software and will support monitoring and decision-making solutions based on big data and real time data mining techniques.
The AFarCloud project also aims to make farming robots accessible to more users by enabling farming vehicles to work in a cooperative mesh, thus opening up new applications and ensuring re-usability, as heterogeneous standard vehicles can combine their capabilities in order to lift farmer revenue and reduce labour costs.
The achievements from AFarCloud will be demonstrated in 3 holistic demonstrators (Finland, Spain and Italy), including cropping and livestock management scenarios and 8 local demonstrators (Latvia, Sweden, Spain and Czech Republic) in order to test specific functionalities and validate project results in relevant environments located in different European regions.
AFarCloud outcomes will strengthen partners’ market position boosting their innovation capacity and addressing industrial needs both at EU and international levels. The consortium represents the whole ICT-based farming solutions’ value chain, including all key actors needed for the development, demonstration and future market uptake of the precision farming framework targeted in the project.

Status

CLOSED

Call topic

ECSEL-2017-2

Update Date

28-07-2022
Images
afarclodu.png
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
H2020-EU.2.1.1.7. ECSEL
H2020-ECSEL-2017-2-RIA-two-stage
ECSEL-2017-2 RIA