FLOIM | Flexible Optical Injection Moulding of optoelectronic devices

Summary

FLOIM will develop an automated process for optical assembly of optoelectronic devices, based on optical quality injection overmoulding. Freeform and microstructured optical surfaces are generated directly on the components through thermoplastic microreplication, using microstructured inserts.

The technology aims to simplify the assembly routes for heterogeneously integrated optoelectronics, with drastic cost reduction, high productivity and improved device performance. Such advantages are demonstrated by three case studies (Datacom transceiver, Optical encoder and OLCD display), showing the flexibility of the processing route and the superior quality of the produced parts.

Two control strategies will be tested for improving the yield:

  • process monitoring/actuation, and
  • functional quality assessment of the produced optoelectronic assembly.

The mould cavity will be instrumented to verify the quality of the injected material and monitor the components alignment with respect to the optical features of the mould. On the other hand, the manufacturing path will incorporate an in-line optical and functional quality inspection system, with complete traceability of each produced part. The project will incorporate data-based quality awareness computing, supported by process abstraction, for predictive quality assurance and process adjustment based on cognitive control. A pilot optical assembly line will incorporate all the advances in the project.

Extended pilot test runs will allow to evaluate the robustness, quality and differential advantages of process and products, and quantify the productivity and effectiveness of the control strategies. Economic and eco-efficiency indicators will be evaluated, in terms of operational costs, recycling, material and energy efficiency, and use of critical materials.

The capability of the consortium partners and the relevance of the selected demonstrators ensure a high impact of the project results and its market uptake.

Unfold all
/
Fold all
More information & hyperlinks
Web resources: http://www.floimproject.eu
https://cordis.europa.eu/project/id/820661
Start date: 01-09-2018
End date: 31-08-2022
Total budget - Public funding: 6 742 238,00 Euro - 6 742 238,00 Euro
Twitter: @FloimProject
View on other portals
Cordis data

Original description

FLOIM will develop an automated process for optical assembly of optoelectronic devices, based on optical quality injection overmoulding. Freeform and microstructured optical surfaces are generated directly on the components through thermoplastic microreplication, using microstructured inserts. The technology aims to simplify the assembly routes for heterogeneously integrated optoelectronics, with drastic cost reduction, high productivity and improved device performance. Such advantages are demonstrated by three case studies (Datacom transceiver, Optical encoder and OLCD display), showing the flexibility of the processing route and the superior quality of the produced parts. Two control strategies will be tested for improving the yield: process monitoring/actuation, and functional quality assessment of the produced optoelectronic assembly. The mould cavity will be instrumented to verify the quality of the injected material and monitor the components alignment with respect to the optical features of the mould. On the other hand, the manufacturing path will incorporate an in-line optical and functional quality inspection system, with complete traceability of each produced part. The project will incorporate data-based quality awareness computing, supported by process abstraction, for predictive quality assurance and process adjustment based on cognitive control. A pilot optical assembly line will incorporate all the advances in the project. Extended pilot test runs will allow to evaluate the robustness, quality and differential advantages of process and products, and quantify the productivity and effectiveness of the control strategies. Economic and eco-efficiency indicators will be evaluated, in terms of operational costs, recycling, material and energy efficiency, and use of critical materials. The capability of the consortium partners and the relevance of the selected demonstrators ensure a high impact of the project results and its market uptake.

Status

CLOSED

Call topic

DT-FOF-03-2018

Update Date

27-10-2022
Images
floim.png
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Factories of the Future Partnership (FoF) - Made in Europe Partnership (MiE)
H2020 - Factories of the Future
H2020-FoF-2018
DT-FOF-03-2018 Innovative manufacturing of opto-electrical parts (RIA)
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.5. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced manufacturing and processing
H2020-EU.2.1.5.1. Technologies for Factories of the Future
H2020-NMBP-FOF-2018
DT-FOF-03-2018 Innovative manufacturing of opto-electrical parts (RIA)