SPACETWIN | Digital twins for understanding forest disturbances and recovery from space

Summary
Forests worldwide are undergoing large-scale and unprecedented changes in terms of structure and species composition due to anthropogenic disturbances, climate change and other global change drivers. Climate, disturbances and forest structure are all closely linked: changes in climate can lead directly to physical changes in forest structure and vice versa or to an anticipated increase in forest disturbances. However, it is still uncertain how forest structure is impacted by disturbances (locally) and how we can detect and monitor various levels of disturbance regimes using spaceborne satellite data (globally).

This project will focus on the impact of drought, fire and logging disturbances across a range of tropical and temperate forest ecosystems. It will lead to a step-change in our ability to observe, quantify and understand forest disturbances and recovery by using time series of the most detailed structural and radiometric 3D forest models ever built: 'digital twin' forests. The key innovations will be: (1) the establishment of an unprecedented 4D dataset across 57 disturbed sites using terrestrial laser scanning (~11,500 individual trees); (2) the development of next generation methods to enable big data science of forest point clouds; (3) the identification of key axes of variation of disturbed tree and forest structure; (4) the first ever implementation of digital twins for optical and microwave radiative transfer modelling; (5) the near-real time inversion of remote sensing of forest disturbances using emulation; and (6) the embedding of forest structure in the global observation process to understand the uncertainties in monitoring disturbances.

These innovations will open a realm of untapped research questions and applications that call for the most detailed 3D information on canopy structure possible. These insights are also urgently needed to reduce uncertainties and advance the forecasting of carbon stocks and dynamics within the context of the IPCC.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101039795
Start date: 01-11-2022
End date: 31-10-2027
Total budget - Public funding: 1 498 859,00 Euro - 1 498 859,00 Euro
Cordis data

Original description

Forests worldwide are undergoing large-scale and unprecedented changes in terms of structure and species composition due to anthropogenic disturbances, climate change and other global change drivers. Climate, disturbances and forest structure are all closely linked: changes in climate can lead directly to physical changes in forest structure and vice versa or to an anticipated increase in forest disturbances. However, it is still uncertain how forest structure is impacted by disturbances (locally) and how we can detect and monitor various levels of disturbance regimes using spaceborne satellite data (globally).

This project will focus on the impact of drought, fire and logging disturbances across a range of tropical and temperate forest ecosystems. It will lead to a step-change in our ability to observe, quantify and understand forest disturbances and recovery by using time series of the most detailed structural and radiometric 3D forest models ever built: 'digital twin' forests. The key innovations will be: (1) the establishment of an unprecedented 4D dataset across 57 disturbed sites using terrestrial laser scanning (~11,500 individual trees); (2) the development of next generation methods to enable big data science of forest point clouds; (3) the identification of key axes of variation of disturbed tree and forest structure; (4) the first ever implementation of digital twins for optical and microwave radiative transfer modelling; (5) the near-real time inversion of remote sensing of forest disturbances using emulation; and (6) the embedding of forest structure in the global observation process to understand the uncertainties in monitoring disturbances.

These innovations will open a realm of untapped research questions and applications that call for the most detailed 3D information on canopy structure possible. These insights are also urgently needed to reduce uncertainties and advance the forecasting of carbon stocks and dynamics within the context of the IPCC.

Status

SIGNED

Call topic

ERC-2021-STG

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2021-STG ERC STARTING GRANTS
HORIZON.1.1.1 Frontier science
ERC-2021-STG ERC STARTING GRANTS