NANODIAGNOSTIC | Super-resolution microscopy for immune checkpoint inhibitors diagnostics

Summary
In the last decade, super-resolution microscopy techniques have emerged as powerful quantitative tools for biology. They have capabilities to visualize single molecules at the nanoscale opening the door to study biological processes at a level not accessible before. In the ERC StG NANOSTORM we showed the potential of these techniques providing new fundamental knowledge on the mechanism and design of new targeted therapies. However, some of the methods we developed have the potential to be translated into applied clinical diagnostic tools. In NANODIAGNOSTIC, we would offer a proof-of-concept of the application of super resolution microscopy and single-molecule imaging for cancer diagnostic, with a focus on patients stratification for immunotherapy. Novel advances in immunotherapies have brought the development of immune checkpoint inhibitors (ICI) that re-activate the immune system against the tumor. Despite the high success of these therapies there is one main challenge: they are only effective on a limited portion of patients and current diagnostic approaches are not capable of stratifying patient successfully. NANODIAGNOSTIC will translate advance optical methods from an academic setting to the clinic and holds a great potential to provide new diagnostic methods to improve the outcome of immunotherapy.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101100873
Start date: 01-12-2022
End date: 31-05-2024
Total budget - Public funding: - 150 000,00 Euro
Cordis data

Original description

In the last decade, super-resolution microscopy techniques have emerged as powerful quantitative tools for biology. They have capabilities to visualize single molecules at the nanoscale opening the door to study biological processes at a level not accessible before. In the ERC StG NANOSTORM we showed the potential of these techniques providing new fundamental knowledge on the mechanism and design of new targeted therapies. However, some of the methods we developed have the potential to be translated into applied clinical diagnostic tools. In NANODIAGNOSTIC, we would offer a proof-of-concept of the application of super resolution microscopy and single-molecule imaging for cancer diagnostic, with a focus on patients stratification for immunotherapy. Novel advances in immunotherapies have brought the development of immune checkpoint inhibitors (ICI) that re-activate the immune system against the tumor. Despite the high success of these therapies there is one main challenge: they are only effective on a limited portion of patients and current diagnostic approaches are not capable of stratifying patient successfully. NANODIAGNOSTIC will translate advance optical methods from an academic setting to the clinic and holds a great potential to provide new diagnostic methods to improve the outcome of immunotherapy.

Status

SIGNED

Call topic

ERC-2022-POC2

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2022-POC2 ERC PROOF OF CONCEPT GRANTS2
HORIZON.1.1.1 Frontier science
ERC-2022-POC2 ERC PROOF OF CONCEPT GRANTS2