Summary
In the last decade, super-resolution microscopy techniques have emerged as powerful quantitative tools for biology. They have capabilities to visualize single molecules at the nanoscale opening the door to study biological processes at a level not accessible before. In the ERC StG NANOSTORM we showed the potential of these techniques providing new fundamental knowledge on the mechanism and design of new targeted therapies. However, some of the methods we developed have the potential to be translated into applied clinical diagnostic tools. In NANODIAGNOSTIC, we would offer a proof-of-concept of the application of super resolution microscopy and single-molecule imaging for cancer diagnostic, with a focus on patients stratification for immunotherapy. Novel advances in immunotherapies have brought the development of immune checkpoint inhibitors (ICI) that re-activate the immune system against the tumor. Despite the high success of these therapies there is one main challenge: they are only effective on a limited portion of patients and current diagnostic approaches are not capable of stratifying patient successfully. NANODIAGNOSTIC will translate advance optical methods from an academic setting to the clinic and holds a great potential to provide new diagnostic methods to improve the outcome of immunotherapy.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101100873 |
Start date: | 01-12-2022 |
End date: | 31-05-2024 |
Total budget - Public funding: | - 150 000,00 Euro |
Cordis data
Original description
In the last decade, super-resolution microscopy techniques have emerged as powerful quantitative tools for biology. They have capabilities to visualize single molecules at the nanoscale opening the door to study biological processes at a level not accessible before. In the ERC StG NANOSTORM we showed the potential of these techniques providing new fundamental knowledge on the mechanism and design of new targeted therapies. However, some of the methods we developed have the potential to be translated into applied clinical diagnostic tools. In NANODIAGNOSTIC, we would offer a proof-of-concept of the application of super resolution microscopy and single-molecule imaging for cancer diagnostic, with a focus on patients stratification for immunotherapy. Novel advances in immunotherapies have brought the development of immune checkpoint inhibitors (ICI) that re-activate the immune system against the tumor. Despite the high success of these therapies there is one main challenge: they are only effective on a limited portion of patients and current diagnostic approaches are not capable of stratifying patient successfully. NANODIAGNOSTIC will translate advance optical methods from an academic setting to the clinic and holds a great potential to provide new diagnostic methods to improve the outcome of immunotherapy.Status
SIGNEDCall topic
ERC-2022-POC2Update Date
09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping