Summary
ReWIRE will combine innovative translational neurotechnologies and rehabilitation interventions for the repair and restoration of neurological functions following injury of the spinal cord (SC). The proposed research program will equip next-generation scientists with unique skills to develop disruptive therapeutic solutions for patients with paralysis. Recent technological breakthroughs have triggered a paradigm shift in the conception of therapies aimed to restore function after spinal cord injury (SCI). Novel drug delivery systems and biomaterial bridges have been engineered to reduce secondary injury and scarring, to stimulate and guide regenerating nerve fibres across the lesion site, and to promote functional reconnection with intact tissue. Additionally, neuromodulation therapies can reactivate spinal circuits below a SCI, allowing people with chronic paralysis to regain voluntary control of walking. In conjunction with rehabilitation, neurological recovery was promoted that persisted without neuromodulation, suggesting a rewiring of the SC as demonstrated in preclinical models. To bypass an injury, neuromodulation has been linked to brain signals to re-establish cortical control over spinal circuits by employing electrical nerve stimulation and robotic systems. Advances in robotics are significantly augmenting the impact of neurorehabilitation by inducing new natural “wired” connections. The aim of ReWIRE is to leverage all these technical and therapeutic breakthroughs in the framework of multiple PhD projects that will continuously interact to converge toward effective combinatorial treatments for SCI. ReWIRE will focus on three inter-woven objectives: i) establish an international, interdisciplinary, and intersectoral educational network, ii) build an SCI clinical data platform, and, iii) position Europe at the forefront of therapy for SCI.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101073374 |
Start date: | 01-01-2023 |
End date: | 31-12-2026 |
Total budget - Public funding: | - 2 666 836,00 Euro |
Cordis data
Original description
ReWIRE will combine innovative translational neurotechnologies and rehabilitation interventions for the repair and restoration of neurological functions following injury of the spinal cord (SC). The proposed research program will equip next-generation scientists with unique skills to develop disruptive therapeutic solutions for patients with paralysis. Recent technological breakthroughs have triggered a paradigm shift in the conception of therapies aimed to restore function after spinal cord injury (SCI). Novel drug delivery systems and biomaterial bridges have been engineered to reduce secondary injury and scarring, to stimulate and guide regenerating nerve fibres across the lesion site, and to promote functional reconnection with intact tissue. Additionally, neuromodulation therapies can reactivate spinal circuits below a SCI, allowing people with chronic paralysis to regain voluntary control of walking. In conjunction with rehabilitation, neurological recovery was promoted that persisted without neuromodulation, suggesting a rewiring of the SC as demonstrated in preclinical models. To bypass an injury, neuromodulation has been linked to brain signals to re-establish cortical control over spinal circuits by employing electrical nerve stimulation and robotic systems. Advances in robotics are significantly augmenting the impact of neurorehabilitation by inducing new natural “wired” connections. The aim of ReWIRE is to leverage all these technical and therapeutic breakthroughs in the framework of multiple PhD projects that will continuously interact to converge toward effective combinatorial treatments for SCI. ReWIRE will focus on three inter-woven objectives: i) establish an international, interdisciplinary, and intersectoral educational network, ii) build an SCI clinical data platform, and, iii) position Europe at the forefront of therapy for SCI.Status
SIGNEDCall topic
HORIZON-MSCA-2021-DN-01-01Update Date
09-02-2023
Images
No images available.
Geographical location(s)