Summary
SENSE promotes the collaboration among European, American, Brazilian and Russian researchers involved in the most important research projects in the field of neutrino physics at the high intensity frontier. The observation of neutrino oscillations established a picture consistent with the mixing of three neutrino flavours in three mass eigenstates and small mass differences. Experimental anomalies suggest the existence of sterile neutrino states participating in the mixing and not coupling to the SM gauge bosons. Lepton mixings and massive neutrinos offer a gateway to deviations from the Standard Model in the lepton sector including Charged Lepton Flavour Violation. The FNAL Short-Baseline Neutrino (SBN) program based on three almost identical liquid argon Time Projection Chambers located along the Booster Neutrino Beam offers a compelling opportunity to resolve the anomalies and perform the most sensitive search for sterile neutrinos at the eV mass scale through appearance and disappearance oscillation searches. MicroBooNE, ICARUS and SBND will search for the oscillation signal by comparing the neutrino event spectra measured at different distances from the source. The FNAL SBN program is a major step towards the global effort of the neutrino physics community in realising the Deep Underground Neutrino Experiment (DUNE) which will provide fundamental contribution to the determination of neutrino mass ordering, measurement of CP violation, precision tests of the three-flavor oscillation paradigm using long-baseline flavor transition, search for nucleon decay and study of the burst of neutrinos from core-collapse supernova in the framework of multi-messenger astronomy. SENSE researchers have provided major contributions to the SBN and DUNE projects and will take leading roles in the commissioning of the detectors, data taking and analysis. These endeavors foster the development of cutting-edge technologies with spin-offs outside particle physics.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101081478 |
Start date: | 01-01-2023 |
End date: | 31-12-2026 |
Total budget - Public funding: | - 754 400,00 Euro |
Cordis data
Original description
SENSE promotes the collaboration among European, American and Brazilian researchers involved in the most important research projects in the field of neutrino physics at the high intensity frontier. The observation of neutrino oscillations established a picture consistent with the mixing of three neutrino flavours in three mass eigenstates and small mass differences. Experimental anomalies suggest the existence of sterile neutrino states participating in the mixing and not coupling to the SM gauge bosons. Lepton mixings and massive neutrinos offer a gateway to deviations from the Standard Model in the lepton sector including Charged Lepton Flavour Violation. The FNAL Short-Baseline Neutrino (SBN) program based on three almost identical liquid argon Time Projection Chambers located along the Booster Neutrino Beam offers a compelling opportunity to resolve the anomalies and perform the most sensitive search for sterile neutrinos at the eV mass scale through appearance and disappearance oscillation searches. MicroBooNE, ICARUS and SBND will search for the oscillation signal by comparing the neutrino event spectra measured at different distances from the source. The FNAL SBN program is a major step towards the global effort of the neutrino physics community in realising the Deep Underground Neutrino Experiment (DUNE) which will provide fundamental contribution to the determination of neutrino mass ordering, measurement of CP violation, precision tests of the three-flavor oscillation paradigm using long-baseline flavor transition, search for nucleon decay and study of the burst of neutrinos from core-collapse supernova in the framework of multi-messenger astronomy. SENSE researchers have provided major contributions to the SBN and DUNE projects and will take leading roles in the commissioning of the detectors, data taking and analysis. These endeavors foster the development of cutting-edge technologies with spin-offs outside particle physics.Status
SIGNEDCall topic
HORIZON-MSCA-2021-SE-01-01Update Date
09-02-2023
Images
No images available.
Geographical location(s)