CISSE | Chiral-Induced Spin Selectivity Effect

Summary
Chirality is often considered as a structural properties of molecules, but the concept also applies to elementary particles having a non-zero spin, i.e. electrons at rest are achiral but they acquire a helicity (chirality) in the direction of motion. Consequently, electrons are filtered according to their spin when crossing chiral materials. This newly uncovered chiral-induced spin selectivity (CISS) effect is surprisingly large. Spin polarization up to 100% has been demonstrated paving the way to multiple applications in chemistry, such as improved control of enantioselective reactions and easier separation of enantiomers. Impacts are also expected in physics (spintronics) and biology (molecular recognition of biomolecules, origin of bio-homo-chirality, magnetic compass of migratory songbirds). CISS effect is theoretically ill-defined. Sound structure-property relationship lacks also for the link between molecule chirality and CISS effect magnitude. CISSE proposal intends to contribute to a giant leap forward in the knowledge of CISS effect by putting together some of the best European, American and Israeli experts of the field, who will work towards its fundamental understanding. To this end, members of the CISSE consortium have been selected for their expertise and complementarities encompassing: synthetic chemistry, electrochemistry, surface science, bio-physical chemistry, quantum chemistry, nanoscience, industrial processes, analytical chemistry, and scientific instrument developments. Importantly, some beneficiaries have filled the first patent applications on CISS effect and have started to valorize them. Considerable scope for new discoveries and invention remains because the field of CISS effect is still in its infancy. The topic is particularly suited to educate ESRs because of its novelty and potential. To gain a different perspective on their research activities, ESRs will also contribute to an artistic creation highlighting spin and chirality.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101071886
Start date: 01-01-2023
End date: 31-12-2026
Total budget - Public funding: - 2 673 813,00 Euro
Cordis data

Original description

Chirality is often considered as a structural properties of molecules, but the concept also applies to elementary particles having a non-zero spin, i.e. electrons at rest are achiral but they acquire a helicity (chirality) in the direction of motion. Consequently, electrons are filtered according to their spin when crossing chiral materials. This newly uncovered chiral-induced spin selectivity (CISS) effect is surprisingly large. Spin polarization up to 100% has been demonstrated paving the way to multiple applications in chemistry, such as improved control of enantioselective reactions and easier separation of enantiomers. Impacts are also expected in physics (spintronics) and biology (molecular recognition of biomolecules, origin of bio-homo-chirality, magnetic compass of migratory songbirds). CISS effect is theoretically ill-defined. Sound structure-property relationship lacks also for the link between molecule chirality and CISS effect magnitude. CISSE proposal intends to contribute to a giant leap forward in the knowledge of CISS effect by putting together some of the best European, American and Israeli experts of the field, who will work towards its fundamental understanding. To this end, members of the CISSE consortium have been selected for their expertise and complementarities encompassing: synthetic chemistry, electrochemistry, surface science, bio-physical chemistry, quantum chemistry, nanoscience, industrial processes, analytical chemistry, and scientific instrument developments. Importantly, some beneficiaries have filled the first patent applications on CISS effect and have started to valorize them. Considerable scope for new discoveries and invention remains because the field of CISS effect is still in its infancy. The topic is particularly suited to educate ESRs because of its novelty and potential. To gain a different perspective on their research activities, ESRs will also contribute to an artistic creation highlighting spin and chirality.

Status

SIGNED

Call topic

HORIZON-MSCA-2021-DN-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2021-DN-01
HORIZON-MSCA-2021-DN-01-01 MSCA Doctoral Networks 2021