Summary
The project focuses on developing novel technologies and materials characterization that are to be used synergistically to create advanced possibilities for terahertz radiation control. International team expertized in materials synthesis and terahertz science will direct its efforts towards the development of innovative quasi-optical technologies which will help finding the solution for efficient use of dielectric and semiconductor crystalline materials, including nanocomposites and coplanar structures, and their application as functional elements in terahertz radiation control devices, ultimately targeting market-ready innovative products. A range of such materials will be considered for thorough investigations of potential application in electro/acousto-quasioptical devices to control THz radiation. Optimization of transmission, absorption, refraction indexes, loss tangent, the dielectric constant will be made based on experimental measurements and computer simulations. The project's scope will include semiconductor materials in which light-induced photogeneration of charge carriers is possible. The effect of photogeneration on the parameters of these materials will be used to develop efficient quasi-optical cells, which are key elements of control devices. The project brings together an international multidisciplinary network of organizations from academia and industry that will work coherently on the innovative research program on quasi-optical technologies and related material engineering. Participants will exchange skills and share knowledge, strengthening links between countries and promoting interaction between involved economics sectors. Reaching the goals related to the implementation of advanced quasi-optical technologies will open new market possibilities for engaged non-academic project participants, ultimately becoming beneficial for European society globally.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101086493 |
Start date: | 01-01-2023 |
End date: | 31-12-2026 |
Total budget - Public funding: | - 1 508 800,00 Euro |
Cordis data
Original description
The project focuses on developing novel technologies and materials characterization that are to be used synergistically to create advanced possibilities for terahertz radiation control. International team expertized in materials synthesis and terahertz science will direct its efforts towards the development of innovative quasi-optical technologies which will help finding the solution for efficient use of dielectric and semiconductor crystalline materials, including nanocomposites and coplanar structures, and their application as functional elements in terahertz radiation control devices, ultimately targeting market-ready innovative products. A range of such materials will be considered for thorough investigations of potential application in electro/acousto-quasioptical devices to control THz radiation. Optimization of transmission, absorption, refraction indexes, loss tangent, the dielectric constant will be made based on experimental measurements and computer simulations. The project's scope will include semiconductor materials in which light-induced photogeneration of charge carriers is possible. The effect of photogeneration on the parameters of these materials will be used to develop efficient quasi-optical cells, which are key elements of control devices. The project brings together an international multidisciplinary network of organizations from academia and industry that will work coherently on the innovative research program on quasi-optical technologies and related material engineering. Participants will exchange skills and share knowledge, strengthening links between countries and promoting interaction between involved economics sectors. Reaching the goals related to the implementation of advanced quasi-optical technologies will open new market possibilities for engaged non-academic project participants, ultimately becoming beneficial for European society globally.Status
SIGNEDCall topic
HORIZON-MSCA-2021-SE-01-01Update Date
09-02-2023
Images
No images available.
Geographical location(s)