INTEGRATE | joInt wireless commuNicaTion and sEnsinG by hologRaphic surfAce TranscEivers

Summary
As the standardization of 5G wireless networks progresses, the research community has started focusing on what 6G will be. Motivated by the need of ensuring high data-rates, while at the same time saving spectrum, a major technology that has been proposed for 6G is the integration of communication and sensing services in the same infrastructure. This enables wireless networks to perceive the surrounding environments, triggering new services and leading to a more efficient use of resources. The INTEGRATE project focuses on the theoretical, algorithmic, and architectural foundations of integrated communication and sensing networks, developing the first open access network-level simulator for joint communication and sensing. To this end, a new implementation of wireless transceiver is proposed, which leverages the use of reconfigurable holographic surfaces and allows the integration of communication and sensing with remarkable performance while at the same time reducing the energy consumption. Specifically, INTEGRATE will: 1) Develop reconfigurable holographic surfaces capable of supporting joint communication and sensing tasks and that can be integrated in wireless transceivers with minimal cost and energy requirements. 2) Characterize the fundamental performance limits of integrated communication and sensing networks, developing an algorithmic framework and protocol suite to approach these limits. 3) Build the first open access software simulation platform for joint communication and sensing networks.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101072924
Start date: 01-03-2023
End date: 28-02-2027
Total budget - Public funding: - 2 706 494,00 Euro
Cordis data

Original description

As the standardization of 5G wireless networks progresses, the research community has started focusing on what 6G will be. Motivated by the need of ensuring high data-rates, while at the same time saving spectrum, a major technology that has been proposed for 6G is the integration of communication and sensing services in the same infrastructure. This enables wireless networks to perceive the surrounding environments, triggering new services and leading to a more efficient use of resources. The INTEGRATE project focuses on the theoretical, algorithmic, and architectural foundations of integrated communication and sensing networks, developing the first open access network-level simulator for joint communication and sensing. To this end, a new implementation of wireless transceiver is proposed, which leverages the use of reconfigurable holographic surfaces and allows the integration of communication and sensing with remarkable performance while at the same time reducing the energy consumption. Specifically, INTEGRATE will: 1) Develop reconfigurable holographic surfaces capable of supporting joint communication and sensing tasks and that can be integrated in wireless transceivers with minimal cost and energy requirements. 2) Characterize the fundamental performance limits of integrated communication and sensing networks, developing an algorithmic framework and protocol suite to approach these limits. 3) Build the first open access software simulation platform for joint communication and sensing networks.

Status

SIGNED

Call topic

HORIZON-MSCA-2021-DN-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2021-DN-01
HORIZON-MSCA-2021-DN-01-01 MSCA Doctoral Networks 2021