SENNET | Porous Networks for Gas Sensing

Summary
Air pollution is one of the most pressing environmental challenges worldwide. While outdoor air pollution appears often in the media, the effects of indoor air pollution are not to be underestimated since the average person spends about 22 h per day indoors. Many chemicals that decrease the quality of indoor air are emitted by carpets, paints, furniture, etc. The majority of these pollutants are volatile organic compounds (VOCs). Since VOCs can cause not only discomfort but also debilitating or even fatal conditions, it is desirable to measure VOC concentrations with high spatial and temporal resolution, via low-cost but reliable miniature sensors. However, selectively measuring harmful VOCs is particularly challenging because of the low concentration of the analyte and the multitude of interfering compounds present in indoor air. Currently available miniature sensors (e.g., metal oxide semiconductor sensors) typically cannot distinguish a VOC of interest from, for instance, an air freshener.

SENNET will develop novel sensors for the selective detection of priority VOCs, based on leveraging the adsorption properties of tuneable porous materials, namely metal-organic frameworks (MOFs) and zeolites. To do so, we will bridge the gap between two fields, namely porous crystalline materials and sensor technology, that have thus far been separated by traditional subject boundaries. SENNET is the first training network that will tackle this challenge, and will do so by combining expertise in chemistry, physics, materials engineering, and sensors. A coordinated effort by 9 beneficiaries and 7 associated partner organizations from 8 countries guarantees a pan-European approach in a multi-environment context (universities, research centres, SMEs and large companies). The proposed ‘follow-the-challenge’ strategy ensures that young researchers are exposed to a variety of research environments and get involved in each step of the materials & sensors value chain.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101072845
Start date: 01-09-2022
End date: 31-08-2026
Total budget - Public funding: - 3 162 456,00 Euro
Cordis data

Original description

Air pollution is one of the most pressing environmental challenges worldwide. While outdoor air pollution appears often in the media, the effects of indoor air pollution are not to be underestimated since the average person spends about 22 h per day indoors. Many chemicals that decrease the quality of indoor air are emitted by carpets, paints, furniture, etc. The majority of these pollutants are volatile organic compounds (VOCs). Since VOCs can cause not only discomfort but also debilitating or even fatal conditions, it is desirable to measure VOC concentrations with high spatial and temporal resolution, via low-cost but reliable miniature sensors. However, selectively measuring harmful VOCs is particularly challenging because of the low concentration of the analyte and the multitude of interfering compounds present in indoor air. Currently available miniature sensors (e.g., metal oxide semiconductor sensors) typically cannot distinguish a VOC of interest from, for instance, an air freshener.

SENNET will develop novel sensors for the selective detection of priority VOCs, based on leveraging the adsorption properties of tuneable porous materials, namely metal-organic frameworks (MOFs) and zeolites. To do so, we will bridge the gap between two fields, namely porous crystalline materials and sensor technology, that have thus far been separated by traditional subject boundaries. SENNET is the first training network that will tackle this challenge, and will do so by combining expertise in chemistry, physics, materials engineering, and sensors. A coordinated effort by 9 beneficiaries and 7 associated partner organizations from 8 countries guarantees a pan-European approach in a multi-environment context (universities, research centres, SMEs and large companies). The proposed ‘follow-the-challenge’ strategy ensures that young researchers are exposed to a variety of research environments and get involved in each step of the materials & sensors value chain.

Status

SIGNED

Call topic

HORIZON-MSCA-2021-DN-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2021-DN-01
HORIZON-MSCA-2021-DN-01-01 MSCA Doctoral Networks 2021