Summary
Ordered nanoporous carbons are gaining appreciable interest in several green technology applications (efficient charge storage, metal-free carbocatalysis). Nevertheless, at present they can only be fabricated using fossil fuel-based building blocks, through energy-intensive processes with large ecological footprint, and with potential environmental pollution. The overall aim of this project is to provide more sustainable alternatives to these fossil fuel-derived materials by fabricating ordered nanoporous carbons from biobased constituents. Our project will focus on studying biobased polymer-biobased surfactant supramolecular assemblies (objective 1) to develop a soft-templating system using only biobased building blocks (objective 2), for obtaining various ordered nanoporous carbons (objective 3) and apply them in charge storage systems (supercapacitors, objective 4), and for metal-free carbocatalysis (advanced oxidation process, objective 5). Our goal is to have control on the nanoarchitecture and understand structure-performance relationships in applications in order to obtain cutting-edge, high-performance materials for advanced devices. Our novel bottom-up approach will give the first biobased soft-templating method to make ordered nanoporous carbons, and is expected to open up new research directions for sustainable material solutions. This project will provide materials and processes with reduced ecological footprint over existing products and technologies, contributing to a sustainable economic growth and to the realisation of a resilient society.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101062130 |
Start date: | 01-10-2022 |
End date: | 30-09-2024 |
Total budget - Public funding: | - 191 760,00 Euro |
Cordis data
Original description
Ordered nanoporous carbons are gaining appreciable interest in several green technology applications (efficient charge storage, metal-free carbocatalysis). Nevertheless, at present they can only be fabricated using fossil fuel-based building blocks, through energy-intensive processes with large ecological footprint, and with potential environmental pollution. The overall aim of this project is to provide more sustainable alternatives to these fossil fuel-derived materials by fabricating ordered nanoporous carbons from biobased constituents. Our project will focus on studying biobased polymer-biobased surfactant supramolecular assemblies (objective 1) to develop a soft-templating system using only biobased building blocks (objective 2), for obtaining various ordered nanoporous carbons (objective 3) and apply them in charge storage systems (supercapacitors, objective 4), and for metal-free carbocatalysis (advanced oxidation process, objective 5). Our goal is to have control on the nanoarchitecture and understand structure-performance relationships in applications in order to obtain cutting-edge, high-performance materials for advanced devices. Our novel bottom-up approach will give the first biobased soft-templating method to make ordered nanoporous carbons, and is expected to open up new research directions for sustainable material solutions. This project will provide materials and processes with reduced ecological footprint over existing products and technologies, contributing to a sustainable economic growth and to the realisation of a resilient society.Status
TERMINATEDCall topic
HORIZON-MSCA-2021-PF-01-01Update Date
09-02-2023
Images
No images available.
Geographical location(s)