PhotoActive | Macroscopic active particles driven by light

Summary
In the last years, there has been an outstanding growing interest in active matter. In these complex systems, a number of interacting agents consume and convert energy into mechanical motion, representing nice examples of out-of-equilibrium behavior. Such systems are important because they can be found in nature ranging from the microscopic to the macroscopic scale, e.g. molecular motors, cells, bird flocks, or human crowds. Interestingly, and despite the obvious differences among the agents that compose these systems, common behavioral patterns have been identified such as collective motion, anomalous diffusion, segregation, or clogging in the flow through constrictions. Aiming for a better understanding of these complex active systems a reductionist strategy is necessary, and this is why the study of active granular matter (very simple self-propelled agents that interact uniquely by contacts) is widely acknowledged.
Within active grains, we can distinguish between internally excited ones (such as Hexbugs) or externally forced ones. Certainly, the former have the advantage to closely resemble real active matter but, to date, also have the drawback of not allowing testing their response to external stimulus. My proposal, PhotoActive, aims to fill this gap by designing novel macroscopic self-propelled agents that are internally excited but can be driven by an external stimulus as it occurs with all natural systems. The idea is to develop and implement Hexbug-like particles whose source of energy comes from a photovoltaic cell. The great advantage of these novel agents concerns the versatility that provides using a fully controllable illumination panel with which we can impose spatial intensity gradients or temporally evolving patterns. In this way, and applying an interdisciplinary approach involving experiments, numerical modeling, and simulations, we ambition boosting the existing understanding of active matter systems.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101067363
Start date: 01-04-2023
End date: 31-03-2025
Total budget - Public funding: - 165 312,00 Euro
Cordis data

Original description

In the last years, there has been an outstanding growing interest in active matter. In these complex systems, a number of interacting agents consume and convert energy into mechanical motion, representing nice examples of out-of-equilibrium behavior. Such systems are important because they can be found in nature ranging from the microscopic to the macroscopic scale, e.g. molecular motors, cells, bird flocks, or human crowds. Interestingly, and despite the obvious differences among the agents that compose these systems, common behavioral patterns have been identified such as collective motion, anomalous diffusion, segregation, or clogging in the flow through constrictions. Aiming for a better understanding of these complex active systems a reductionist strategy is necessary, and this is why the study of active granular matter (very simple self-propelled agents that interact uniquely by contacts) is widely acknowledged.
Within active grains, we can distinguish between internally excited ones (such as Hexbugs) or externally forced ones. Certainly, the former have the advantage to closely resemble real active matter but, to date, also have the drawback of not allowing testing their response to external stimulus. My proposal, PhotoActive, aims to fill this gap by designing novel macroscopic self-propelled agents that are internally excited but can be driven by an external stimulus as it occurs with all natural systems. The idea is to develop and implement Hexbug-like particles whose source of energy comes from a photovoltaic cell. The great advantage of these novel agents concerns the versatility that provides using a fully controllable illumination panel with which we can impose spatial intensity gradients or temporally evolving patterns. In this way, and applying an interdisciplinary approach involving experiments, numerical modeling, and simulations, we ambition boosting the existing understanding of active matter systems.

Status

SIGNED

Call topic

HORIZON-MSCA-2021-PF-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2021-PF-01
HORIZON-MSCA-2021-PF-01-01 MSCA Postdoctoral Fellowships 2021