Summary
Nanoscience is revolutionizing the 21st century in a multitude of areas from nanomedicine to communication technologies, and nanomagnetism is playing a key role in this revolution. The recent move to three dimensional nanomagnetic systems brings with it not only the appearance of novel and unconventional magnetic states but also the realisation of unprecedented properties. In particular, the three-dimensionality is predicted to have a significant influence on the dynamics of magnetic domain walls, soliton-like textures that form the basis of many proposed spintronics devices in recent years. Despite these promising opportunities, most of these exciting new properties remain predictions and have not yet been realised experimentally. SPEEDY aims to establish for the first time an experimental understanding of magnetic domain wall dynamics in systems with a complex 3D structure. We will determine the influence of 3D geometry - by the introduction of curvature and torsion - on the domain wall motion through the study of carefully designed systems with increasing complexity. The project will be conducted in the group of Dr. C. Donnelly at the Max Planck institute for Chemical Physics of Solids, including two secondments of three months in the group of Dr. O. Fruchart in SPINTEC. SPEEDY also constitutes a career development project aimed at enhancing the creative and innovative potential of the applicant, providing excellent working conditions in a high-level highly collaborative research environment. This opportunity will prepare the applicant to become a well-established independent scientist and will be key to building her successful scientific research career in Europe.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101061612 |
Start date: | 01-04-2023 |
End date: | 31-03-2025 |
Total budget - Public funding: | - 173 847,00 Euro |
Cordis data
Original description
Nanoscience is revolutionizing the 21st century in a multitude of areas from nanomedicine to communication technologies, and nanomagnetism is playing a key role in this revolution. The recent move to three dimensional nanomagnetic systems brings with it not only the appearance of novel and unconventional magnetic states but also the realisation of unprecedented properties. In particular, the three-dimensionality is predicted to have a significant influence on the dynamics of magnetic domain walls, soliton-like textures that form the basis of many proposed spintronics devices in recent years. Despite these promising opportunities, most of these exciting new properties remain predictions and have not yet been realised experimentally. SPEEDY aims to establish for the first time an experimental understanding of magnetic domain wall dynamics in systems with a complex 3D structure. We will determine the influence of 3D geometry - by the introduction of curvature and torsion - on the domain wall motion through the study of carefully designed systems with increasing complexity. The project will be conducted in the group of Dr. C. Donnelly at the Max Planck institute for Chemical Physics of Solids, including two secondments of three months in the group of Dr. O. Fruchart in SPINTEC. SPEEDY also constitutes a career development project aimed at enhancing the creative and innovative potential of the applicant, providing excellent working conditions in a high-level highly collaborative research environment. This opportunity will prepare the applicant to become a well-established independent scientist and will be key to building her successful scientific research career in Europe.Status
SIGNEDCall topic
HORIZON-MSCA-2021-PF-01-01Update Date
09-02-2023
Images
No images available.
Geographical location(s)