Summary
Currently, nuclear installations release approximately 4.4E+16 Bq/year of tritium, the radioactive isotope of hydrogen, to the environment worldwide as no technologies seem to be technically and/or economically feasible for water detritiation. Aiming at the development of a novel and effective technology, a hybrid of bio-photo-electrochemical system for detritiation of light-water (BPEC-DW) is presented for water reuse and simultaneously H2 generation as one of the most effective alternative energy sources. In this multidisciplinary project, solar activated nanomaterials based on modified TiO2 and BiVO4 and graphene oxide and/or reduced graphene oxide will be synthesized and coupled with different bacteria to enhance the feasibility of hydrogen isotope (H and T) separation and catalyses H2 generation. The BPEC-DW will be optimized by study of influence of key parameters on BPEC-DW performance to be accepted for the designing of the facility in the future. The societal challenges in energy and water research are among the focus areas and recent priorities. The economic impact of BPEC-DW relies on the utilities of solar irradiation and non-expensive materials, decreasing emissions of greenhouse gases, eco-friendly and cost-effective techniques. There is a strong and clear two-way transfer of knowledge objective linked in BPEC-DW project with the transfer of a wide array of materials synthesis, photo-electro-catalytic, and PEC water splitting expertise from applicant to the host institution, while she will receive world-class training in different research fields such as biotechnology, microbiology, and radiochemistry and develop her communication skills in an international environment which are excellent conditions for the development of her future career.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101061873 |
Start date: | 01-12-2022 |
End date: | 30-11-2024 |
Total budget - Public funding: | - 171 399,00 Euro |
Cordis data
Original description
Currently, nuclear installations release approximately 4.4E+16 Bq/year of tritium, the radioactive isotope of hydrogen, to the environment worldwide as no technologies seem to be technically and/or economically feasible for water detritiation. Aiming at the development of a novel and effective technology, a hybrid of bio-photo-electrochemical system for detritiation of light-water (BPEC-DW) is presented for water reuse and simultaneously H2 generation as one of the most effective alternative energy sources. In this multidisciplinary project, solar activated nanomaterials based on modified TiO2 and BiVO4 and graphene oxide and/or reduced graphene oxide will be synthesized and coupled with different bacteria to enhance the feasibility of hydrogen isotope (H and T) separation and catalyses H2 generation. The BPEC-DW will be optimized by study of influence of key parameters on BPEC-DW performance to be accepted for the designing of the facility in the future. The societal challenges in energy and water research are among the focus areas and recent priorities. The economic impact of BPEC-DW relies on the utilities of solar irradiation and non-expensive materials, decreasing emissions of greenhouse gases, eco-friendly and cost-effective techniques. There is a strong and clear two-way transfer of knowledge objective linked in BPEC-DW project with the transfer of a wide array of materials synthesis, photo-electro-catalytic, and PEC water splitting expertise from applicant to the host institution, while she will receive world-class training in different research fields such as biotechnology, microbiology, and radiochemistry and develop her communication skills in an international environment which are excellent conditions for the development of her future career.Status
SIGNEDCall topic
HORIZON-MSCA-2021-PF-01-01Update Date
09-02-2023
Images
No images available.
Geographical location(s)