FAAST | Facilitating Autonomy in Astrodynamics for Spacecraft Technology

Summary
The FAAST project (Facilitating Autonomy in Astrodynamics for Spacecraft Technology) is proposed for developing autonomous guidance and control algorithms for CubeSats and other interplanetary spacecraft. This project will be conducted with Prof. Francesco Topputo of the DART group at Politecnico di Milano (Polimi) in Italy, which has expertise in deep-space guidance, navigation, and control (GNC) from its past and present involvement with ESA projects, including multiple CubeSat missions. The primary focus of FAAST is on autonomous orbit guidance and control for deep-space scientific space missions - a challenging problem which currently must be handled by dedicated teams of engineers on Earth which support the spacecraft's operations. In particular, this work is concerned with autonomous guidance and control in the vicinity of asteroids, which presents a particularly challenging environment. The FAAST project will contribute to, benefit from, and interface with the DART group's EXTREMA project, a 5 year (2021-2026) €2M project funded by the European Research Council. EXTREMA is developing new GNC techniques for self-driving spacecraft.

FAAST proposes research activity that spans from fundamental developments in celestial mechanics and astrodynamics to specific algorithm development and demonstration in a high-fidelity setting. This presents an ambitious course of research for a two-year project, but it is well-organized into four achievable objectives. The researcher holds a PhD in Aerospace Engineering Sciences from the University of Colorado Boulder, a leading institution in spaceflight education and research. The supervisor is a Full Professor of Aerospace Engineering at Polimi, and a leading expert in spacecraft GNC and interplanetary CubeSats. This project has the potential to meaningfully advance the state-of-the-art in spacecraft guidance and control while facilitating transatlantic cooperation between the US and EU spaceflight research communities.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101063274
Start date: 16-07-2023
End date: 15-07-2025
Total budget - Public funding: - 172 750,00 Euro
Cordis data

Original description

The FAAST project (Facilitating Autonomy in Astrodynamics for Spacecraft Technology) is proposed for developing autonomous guidance and control algorithms for CubeSats and other interplanetary spacecraft. This project will be conducted with Prof. Francesco Topputo of the DART group at Politecnico di Milano (Polimi) in Italy, which has expertise in deep-space guidance, navigation, and control (GNC) from its past and present involvement with ESA projects, including multiple CubeSat missions. The primary focus of FAAST is on autonomous orbit guidance and control for deep-space scientific space missions - a challenging problem which currently must be handled by dedicated teams of engineers on Earth which support the spacecraft's operations. In particular, this work is concerned with autonomous guidance and control in the vicinity of asteroids, which presents a particularly challenging environment. The FAAST project will contribute to, benefit from, and interface with the DART group's EXTREMA project, a 5 year (2021-2026) €2M project funded by the European Research Council. EXTREMA is developing new GNC techniques for self-driving spacecraft.

FAAST proposes research activity that spans from fundamental developments in celestial mechanics and astrodynamics to specific algorithm development and demonstration in a high-fidelity setting. This presents an ambitious course of research for a two-year project, but it is well-organized into four achievable objectives. The researcher holds a PhD in Aerospace Engineering Sciences from the University of Colorado Boulder, a leading institution in spaceflight education and research. The supervisor is a Full Professor of Aerospace Engineering at Polimi, and a leading expert in spacecraft GNC and interplanetary CubeSats. This project has the potential to meaningfully advance the state-of-the-art in spacecraft guidance and control while facilitating transatlantic cooperation between the US and EU spaceflight research communities.

Status

SIGNED

Call topic

HORIZON-MSCA-2021-PF-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2021-PF-01
HORIZON-MSCA-2021-PF-01-01 MSCA Postdoctoral Fellowships 2021