Sweet2Gel | Learning to Design Sweet Renewable Hydrogels - Development of Experimental Protocols and Deep Learning Models to Decode Complex Structure-Function Relatioships

Summary
Gels are 3D entangled polymer or particle networks that present, simultaneously, solid and liquid-like properties. Gels are widely present in daily life products such as contact lenses, food thickeners, platforms for drug delivery, or wound healing ointments, among others. Carbohydrate-based hydrogels have gathered increasing attention for a wide range of biomedical and industrial applications (e.g. tissue engineering or water decontamination) due to their biocompatible, biodegradable and non-immunogenic features. However, the development of most gel-like materials is currently limited due their high production costs and greatly pollutant manufacturing techniques. In addition, the great structural complexity of gels, where different lengths scales and isotropic and anisotropic phases coexist, limit their characterisation at the molecular and macroscopic scales, thus hindering the design and development of functional gels with tailored properties. High Resolution Magic Angle Spinning (HR-MAS) and solid-state NMR (SSNMR) spectroscopy constitute the most powerful technologies to characterise the structure and dynamics of hydrogels at the molecular level, not accessible by other techniques. The specific objectives of the Sweet2Gel project are (i) to develop novel HR-MAS and SSNMR protocols for the characterisation of carbohydrate-based gels, (ii) to develop predictive deep-learning-based models that allow to decipher hidden relationships between the molecular and macroscopic properties of the gels and (iii) to improve the molecular models of carbohydrate gel particles by a combination of molecular dynamics and deep learning approaches. Hence, the Sweet2Gel Project aims to accelerate the development of a new generation of renewable materials with rationally designed properties for a wide range of applications.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101064251
Start date: 16-05-2022
End date: 15-06-2024
Total budget - Public funding: - 181 152,00 Euro
Cordis data

Original description

Gels are 3D entangled polymer or particle networks that present, simultaneously, solid and liquid-like properties. Gels are widely present in daily life products such as contact lenses, food thickeners, platforms for drug delivery, or wound healing ointments, among others. Carbohydrate-based hydrogels have gathered increasing attention for a wide range of biomedical and industrial applications (e.g. tissue engineering or water decontamination) due to their biocompatible, biodegradable and non-immunogenic features. However, the development of most gel-like materials is currently limited due their high production costs and greatly pollutant manufacturing techniques. In addition, the great structural complexity of gels, where different lengths scales and isotropic and anisotropic phases coexist, limit their characterisation at the molecular and macroscopic scales, thus hindering the design and development of functional gels with tailored properties. High Resolution Magic Angle Spinning (HR-MAS) and solid-state NMR (SSNMR) spectroscopy constitute the most powerful technologies to characterise the structure and dynamics of hydrogels at the molecular level, not accessible by other techniques. The specific objectives of the Sweet2Gel project are (i) to develop novel HR-MAS and SSNMR protocols for the characterisation of carbohydrate-based gels, (ii) to develop predictive deep-learning-based models that allow to decipher hidden relationships between the molecular and macroscopic properties of the gels and (iii) to improve the molecular models of carbohydrate gel particles by a combination of molecular dynamics and deep learning approaches. Hence, the Sweet2Gel Project aims to accelerate the development of a new generation of renewable materials with rationally designed properties for a wide range of applications.

Status

SIGNED

Call topic

HORIZON-MSCA-2021-PF-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2021-PF-01
HORIZON-MSCA-2021-PF-01-01 MSCA Postdoctoral Fellowships 2021