SpaceTimeFerro | Space-time visualization of photo-excited carrier dynamics in ferroelectric solar-energy converters by ultrafast electron microscopy

Summary
Giant bulk photovoltaic effect in non-centrosymmetric ferroelectric materials is currently gaining tremendous research interest due to its above-bandgap photovoltage and the observed output voltage is around 3-4 orders of magnitude higher than the Si-solar cells. Hence, the ferroelectric photovoltaic response is considered the next-generation photovoltaic device. However, researchers currently lack a profound understanding of the exact mechanism of the bulk photovoltaic effect, and the proposed mechanisms are contradictory to each other. This, in turn, restricts the progress of the field towards efficient solar cells. The difficult part of finding the exact mechanism is due to ultrafast carrier dynamics and atomic relaxation times are of the order of ≈ 0.1 to 10 femtoseconds, which made it experimentally inaccessible. At present, the excellent infrastructure and facilities of my host institute dealing with the ultrafast carrier dynamics can record the meticulous dynamics in space-time resolution and hence can provide the exact mechanism towards the above bandgap photovoltage in the ferroelectric system. Therefore, through this project, we are going to investigate the origin of the anomalous bulk photovoltaic effect in perovskite ferroelectric oxides by “filming” the ultrafast photo-absorption and subsequent photo-excited carrier relaxation dynamics with femtosecond time resolution and nanometre spatial resolution using laser-driven electron microscopy. In contrast to the spectroscopic approach, ultrafast electron pulses in a femtosecond electron microscope or diffraction apparatus can provide nanometre spatial and femtosecond temporal resolutions at the same time and hence can provide a movie of evolving electromagnetic field in space and time. Based on the data generated, a comprehensive physical mechanism will be put forth, which will act as guidance for the selection and design of future ferroelectric systems for an improved photovoltaic response.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101064961
Start date: 01-01-2023
End date: 31-12-2024
Total budget - Public funding: - 189 687,00 Euro
Cordis data

Original description

Giant bulk photovoltaic effect in non-centrosymmetric ferroelectric materials is currently gaining tremendous research interest due to its above-bandgap photovoltage and the observed output voltage is around 3-4 orders of magnitude higher than the Si-solar cells. Hence, the ferroelectric photovoltaic response is considered the next-generation photovoltaic device. However, researchers currently lack a profound understanding of the exact mechanism of the bulk photovoltaic effect, and the proposed mechanisms are contradictory to each other. This, in turn, restricts the progress of the field towards efficient solar cells. The difficult part of finding the exact mechanism is due to ultrafast carrier dynamics and atomic relaxation times are of the order of ≈ 0.1 to 10 femtoseconds, which made it experimentally inaccessible. At present, the excellent infrastructure and facilities of my host institute dealing with the ultrafast carrier dynamics can record the meticulous dynamics in space-time resolution and hence can provide the exact mechanism towards the above bandgap photovoltage in the ferroelectric system. Therefore, through this project, we are going to investigate the origin of the anomalous bulk photovoltaic effect in perovskite ferroelectric oxides by “filming” the ultrafast photo-absorption and subsequent photo-excited carrier relaxation dynamics with femtosecond time resolution and nanometre spatial resolution using laser-driven electron microscopy. In contrast to the spectroscopic approach, ultrafast electron pulses in a femtosecond electron microscope or diffraction apparatus can provide nanometre spatial and femtosecond temporal resolutions at the same time and hence can provide a movie of evolving electromagnetic field in space and time. Based on the data generated, a comprehensive physical mechanism will be put forth, which will act as guidance for the selection and design of future ferroelectric systems for an improved photovoltaic response.

Status

SIGNED

Call topic

HORIZON-MSCA-2021-PF-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2021-PF-01
HORIZON-MSCA-2021-PF-01-01 MSCA Postdoctoral Fellowships 2021