RHYTHM | Engineered Heart Tissue (EHT) Devices based on Ion Conductive Guanosine-Quadruplex (GQ) Hydrogels: A Route to Advance In Vitro 3D Cardiac Tissue Models

Summary
In this project, a micro-engineered heart tissue (EHT) device that will advance the physiological relevance of current in vitro 3D cardiac tissue models will be developed. In moving towards this goal, this project will synthesize conductive guanosine-quadruplex (GQ) hydrogels and implement them as cell scaffolds in EHT devices. Key aspects of biomaterials design are the unique conductive and hierarchical 3D fibrous network and the good biocompatibility of GQ hydrogels, which will support cardiac cell culture. Upon integration in the EHT platform, the mentioned properties of GQ hydrogels will enable electrical stimulation of embedded cardiac cells under mild pacing voltages, thereby promoting the formation of morphologically and functionally mature cardiac tissue. GQ hydrogels will demonstrate high flexibility and potentially broad utility as a biocompatible and conductive biomaterial for in vitro cell experimentation. The outcomes of this project will expand the horizon of pre-clinical 3D cardiac tissue models, paving the way for future approaches to drug testing and personalized cardiovascular medicine.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101067198
Start date: 01-09-2023
End date: 31-08-2025
Total budget - Public funding: - 187 624,00 Euro
Cordis data

Original description

In this project, a micro-engineered heart tissue (EHT) device that will advance the physiological relevance of current in vitro 3D cardiac tissue models will be developed. In moving towards this goal, this project will synthesize conductive guanosine-quadruplex (GQ) hydrogels and implement them as cell scaffolds in EHT devices. Key aspects of biomaterials design are the unique conductive and hierarchical 3D fibrous network and the good biocompatibility of GQ hydrogels, which will support cardiac cell culture. Upon integration in the EHT platform, the mentioned properties of GQ hydrogels will enable electrical stimulation of embedded cardiac cells under mild pacing voltages, thereby promoting the formation of morphologically and functionally mature cardiac tissue. GQ hydrogels will demonstrate high flexibility and potentially broad utility as a biocompatible and conductive biomaterial for in vitro cell experimentation. The outcomes of this project will expand the horizon of pre-clinical 3D cardiac tissue models, paving the way for future approaches to drug testing and personalized cardiovascular medicine.

Status

SIGNED

Call topic

HORIZON-MSCA-2021-PF-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2021-PF-01
HORIZON-MSCA-2021-PF-01-01 MSCA Postdoctoral Fellowships 2021