TOPEX | Extreme confinement of topologically protected slow light

Summary
Light-matter interaction in nanophotonic waveguides is enhanced by tightly confining and slowing down light. However, both these strategies have had their own limitations. Firstly, the spatial confinement has traditionally been thought to be bound at the diffraction limit and more recently limited by nanofabrication resolution. Secondly, backscattering due to unavoidable structural disorder has limited progress in the field of slow light. TOPEX will overcome these limitations by merging two recent developments in photonics: topological protection against disorder and extreme subwavelength confinement of light. Based on theoretical predictions of the applicant and cutting-edge nanotechnology only at experimental reach at the host institution, TOPEX will design, build, measure, and explore topological slow-light nanophotonic waveguides exhibiting extreme dielectric photon confinement. The project is motivated in part by the urgent need for enhancing light-matter interaction in order to reduce the energy consumption of information technologies and in part by the fundamental quest towards understanding how slow and small a photon can be. It represents an extraordinary training opportunity on complementary scientific and soft skills for the applicant and has transformational impact potential on photonic integrated devices, optical data processing, quantum technologies, and beyond.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101067606
Start date: 01-08-2022
End date: 31-07-2024
Total budget - Public funding: - 214 934,00 Euro
Cordis data

Original description

Light-matter interaction in nanophotonic waveguides is enhanced by tightly confining and slowing down light. However, both these strategies have had their own limitations. Firstly, the spatial confinement has traditionally been thought to be bound at the diffraction limit and more recently limited by nanofabrication resolution. Secondly, backscattering due to unavoidable structural disorder has limited progress in the field of slow light. TOPEX will overcome these limitations by merging two recent developments in photonics: topological protection against disorder and extreme subwavelength confinement of light. Based on theoretical predictions of the applicant and cutting-edge nanotechnology only at experimental reach at the host institution, TOPEX will design, build, measure, and explore topological slow-light nanophotonic waveguides exhibiting extreme dielectric photon confinement. The project is motivated in part by the urgent need for enhancing light-matter interaction in order to reduce the energy consumption of information technologies and in part by the fundamental quest towards understanding how slow and small a photon can be. It represents an extraordinary training opportunity on complementary scientific and soft skills for the applicant and has transformational impact potential on photonic integrated devices, optical data processing, quantum technologies, and beyond.

Status

TERMINATED

Call topic

HORIZON-MSCA-2021-PF-01-01

Update Date

09-02-2023
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2021-PF-01
HORIZON-MSCA-2021-PF-01-01 MSCA Postdoctoral Fellowships 2021