ION-MAN | Rational design of polymerized IONic liquid electrolytes for MultivAleNt ion batteries

Summary
With global battery demand projected to increase by 25% per year till 2030, it is urgent to overcome the limitations of commercial Li-ion batteries in terms of energy density, safety, cost and carbon footprint. Batteries based on multivalent chemistries can reach significantly higher energy densities at lower costs. In particular, magnesium has very high volumetric capacity, low reduction potential, no toxicity, it is easier to handle than lithium, and 3000-times more abundant and more geographically widespread. Therefore, rechargeable magnesium batteries (RMBs) can enable safe, low-cost, high-energy-density energy storage, contributing to the energy security and the creation of a competitive battery ecosystem within the European Union.
The major barrier to RMBs is the lack of Mg-conducting electrolytes that allow reversible, charge efficient plating/stripping of metallic Mg. ION-MAN will develop a new family of high-performing electrolytes for RMBs based on polymerized ionic liquids (PILs). The rationally designed electrolyte structures combine the strengths of previously reported Mg-conducting electrolytes, to the exploration of topological effects. An integrated, multi-technique approach that uses advanced characterization tools will enable to measure physicochemical properties, and propose suitable long-range charge migration mechanisms for the electrolytes. Despite the bivalency of Mg2+ leads to strong interactions with anions and solvents, the proposed methodology will allow for accurately identifying the mobile Mg species, their interactions with other components and their reactions with both electrodes of an RMB. Thus, the compatibility with Mg metal anode and selected cathodes will be thoroughly investigated, defining requirements for device optimization, toward safe and practical RMBs.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101068538
Start date: 01-03-2023
End date: 28-02-2025
Total budget - Public funding: - 172 750,00 Euro
Cordis data

Original description

With global battery demand projected to increase by 25% per year till 2030, it is urgent to overcome the limitations of commercial Li-ion batteries in terms of energy density, safety, cost and carbon footprint. Batteries based on multivalent chemistries can reach significantly higher energy densities at lower costs. In particular, magnesium has very high volumetric capacity, low reduction potential, no toxicity, it is easier to handle than lithium, and 3000-times more abundant and more geographically widespread. Therefore, rechargeable magnesium batteries (RMBs) can enable safe, low-cost, high-energy-density energy storage, contributing to the energy security and the creation of a competitive battery ecosystem within the European Union.
The major barrier to RMBs is the lack of Mg-conducting electrolytes that allow reversible, charge efficient plating/stripping of metallic Mg. ION-MAN will develop a new family of high-performing electrolytes for RMBs based on polymerized ionic liquids (PILs). The rationally designed electrolyte structures combine the strengths of previously reported Mg-conducting electrolytes, to the exploration of topological effects. An integrated, multi-technique approach that uses advanced characterization tools will enable to measure physicochemical properties, and propose suitable long-range charge migration mechanisms for the electrolytes. Despite the bivalency of Mg2+ leads to strong interactions with anions and solvents, the proposed methodology will allow for accurately identifying the mobile Mg species, their interactions with other components and their reactions with both electrodes of an RMB. Thus, the compatibility with Mg metal anode and selected cathodes will be thoroughly investigated, defining requirements for device optimization, toward safe and practical RMBs.

Status

TERMINATED

Call topic

HORIZON-MSCA-2021-PF-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2021-PF-01
HORIZON-MSCA-2021-PF-01-01 MSCA Postdoctoral Fellowships 2021