Summary
Light olefins have been considered fundamental feedstocks in the chemical industry for decades. Current industrial processes for the synthesis of light olefins include naphtha cracking and light alkane dehydrogenation in thermochemical processes are under harsh conditions, and therefore energy-intensive. In the last decade, the solar-to-chemicals conversion process has attracted great attention, as it is deemed that the utilization of solar energy for the replacement of traditional fossil fuels is an ideal solution to the energy crisis and global warming. However, even though several reaction processes have been extensively studied and progress has been achieved, such as photocatalytic water splitting and photothermal/photocatalytic CO2 reduction, light-assisted alkane dehydrogenation reactions for the sustainable production of alkenes has not been explored yet. The objective of this research proposal is twofold: 1) developing new catalyst based on trimetallic clusters confined in Zr-based MOFs (TMC-MOF) for the photo-assisted light alkane dehydrogenation under mild conditions (
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101058872 |
Start date: | 01-07-2023 |
End date: | 30-06-2025 |
Total budget - Public funding: | - 189 687,00 Euro |
Cordis data
Original description
Light olefins have been considered fundamental feedstocks in the chemical industry for decades. Current industrial processes for the synthesis of light olefins include naphtha cracking and light alkane dehydrogenation in thermochemical processes are under harsh conditions, and therefore energy-intensive. In the last decade, the solar-to-chemicals conversion process has attracted great attention, as it is deemed that the utilization of solar energy for the replacement of traditional fossil fuels is an ideal solution to the energy crisis and global warming. However, even though several reaction processes have been extensively studied and progress has been achieved, such as photocatalytic water splitting and photothermal/photocatalytic CO2 reduction, light-assisted alkane dehydrogenation reactions for the sustainable production of alkenes has not been explored yet. The objective of this research proposal is twofold: 1) developing new catalyst based on trimetallic clusters confined in Zr-based MOFs (TMC-MOF) for the photo-assisted light alkane dehydrogenation under mild conditions (Status
SIGNEDCall topic
HORIZON-MSCA-2021-PF-01-01Update Date
09-02-2023
Images
No images available.
Geographical location(s)