MagGraphZyme | Design of novel Magnetic Graphene Oxide Nanozyme platform for Theranostic applications

Summary
MagGraphZyme aims at the development of a new hybrid multiplatform capable of triggering the intracellular production of reactive oxygen/nitrogen species (ROS/RNS) for inducing cell death in cancer cells. The proposed hybrid nanosystem, based on the combination of magnetic nanoparticles (MNPs), nitrogen doped graphene oxide (N-GO) and a polymer (PLGA) shell, will improve ROS/RNS production due to the synergistic effects of all components regarding their catalytic activity as peroxidase-mimetic nanozymes. The control of this catalytic activity will be performed by heating the intracellular level via the activation of the constituent MNPs through a remotely applied magnetic field. Thus, a novel approach for intracellular ROS/RNS production and quantification will be implemented. Furthermore, with the aim of understanding the different cells’ pathways involved in the toxicity and the final death of the cells, these hybrid system will be evaluated to investigate pathway-specific ROS/RNS induction of apoptosis and ROS-response mechanisms. Thus, I will study signaling pathways which are known to be influenced by the production of these species. To this end, I propose detailed physical and chemical studies, down to the atomic level, of the MNPs@N-GO-PLGA systems for identifying the relationships between catalytic efficacy and active atomic sites within the structures. These works will be developed by a motivated researcher with a strong background in MNPs, who will enhance and diversify his skills in advanced microscopy techniques and will acquire competences in bio-medicine. This multidisciplinary and innovative proposal will strengthen the collaboration between the hosting institutions, will enable the European hosting institution to reinforce crucial competences in the understanding & production of multifunctional materials and will contribute to improving oncological applications, which is one of the most important scientific challenges with a high social impact.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101068591
Start date: 01-06-2023
End date: 31-05-2026
Total budget - Public funding: - 261 380,00 Euro
Cordis data

Original description

MagGraphZyme aims at the development of a new hybrid multiplatform capable of triggering the intracellular production of reactive oxygen/nitrogen species (ROS/RNS) for inducing cell death in cancer cells. The proposed hybrid nanosystem, based on the combination of magnetic nanoparticles (MNPs), nitrogen doped graphene oxide (N-GO) and a polymer (PLGA) shell, will improve ROS/RNS production due to the synergistic effects of all components regarding their catalytic activity as peroxidase-mimetic nanozymes. The control of this catalytic activity will be performed by heating the intracellular level via the activation of the constituent MNPs through a remotely applied magnetic field. Thus, a novel approach for intracellular ROS/RNS production and quantification will be implemented. Furthermore, with the aim of understanding the different cells’ pathways involved in the toxicity and the final death of the cells, these hybrid system will be evaluated to investigate pathway-specific ROS/RNS induction of apoptosis and ROS-response mechanisms. Thus, I will study signaling pathways which are known to be influenced by the production of these species. To this end, I propose detailed physical and chemical studies, down to the atomic level, of the MNPs@N-GO-PLGA systems for identifying the relationships between catalytic efficacy and active atomic sites within the structures. These works will be developed by a motivated researcher with a strong background in MNPs, who will enhance and diversify his skills in advanced microscopy techniques and will acquire competences in bio-medicine. This multidisciplinary and innovative proposal will strengthen the collaboration between the hosting institutions, will enable the European hosting institution to reinforce crucial competences in the understanding & production of multifunctional materials and will contribute to improving oncological applications, which is one of the most important scientific challenges with a high social impact.

Status

SIGNED

Call topic

HORIZON-MSCA-2021-PF-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2021-PF-01
HORIZON-MSCA-2021-PF-01-01 MSCA Postdoctoral Fellowships 2021