NOVITAS | Nonlinear analysis for virtual design of composite deployable space booms and membranes

Summary
NOVITAS aims to generate novel advances in the mathematical modelling of deployable and ultra-thin structures. They consist of booms and membranes that are first flat and coiled around a cylinder, and then they passively deploy, releasing the elastic strain energy stored during the furling phase. During history, deployable structures were adopted for various space applications, for instance, for telescopes, photovoltaic surfaces and antennas. The adoption of deployable booms allows larger structures to be easily and efficiently packaged for launch and reliably deployed on orbit. Despite the reliability of this kind of structure, there are still some issues to be tackled, including the development of a mathematical model able to deal with the accurate definition of the multiscale three-dimensional stress state and failure identification, the material viscoelastic effects, the effects of new composite materials and the multibody simulation for the deployment phase. We will address these issues with an innovative and interdisciplinary approach that combines theoretical, numerical and experimental investigations. The mathematical models formulated by NOVITAS will be able to accurately describe the nonlinear (mainly geometrical) behaviour that this kind of structure typically show during their services, whereas current models fall short due to their time-consuming analyses. We will compare and validate the numerical results with those obtained by experiments, which consists of the creation of a prototype at the Space Structures Laboratory at Caltech, for the viscoelastic and thermal multiphysics testing and simulation of deployment phases to be simulated with a multibody approach. The developed modelling technique will provide engineers with an efficient way for the design of space structures, consistently with the space-based technological innovation necessary for the always more ambitious needs of our society and to encourage a sustainable European economy.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101059825
Start date: 15-03-2023
End date: 14-03-2026
Total budget - Public funding: - 288 859,00 Euro
Cordis data

Original description

NOVITAS aims to generate novel advances in the mathematical modelling of deployable and ultra-thin structures. They consist of booms and membranes that are first flat and coiled around a cylinder, and then they passively deploy, releasing the elastic strain energy stored during the furling phase. During history, deployable structures were adopted for various space applications, for instance, for telescopes, photovoltaic surfaces and antennas. The adoption of deployable booms allows larger structures to be easily and efficiently packaged for launch and reliably deployed on orbit. Despite the reliability of this kind of structure, there are still some issues to be tackled, including the development of a mathematical model able to deal with the accurate definition of the multiscale three-dimensional stress state and failure identification, the material viscoelastic effects, the effects of new composite materials and the multibody simulation for the deployment phase. We will address these issues with an innovative and interdisciplinary approach that combines theoretical, numerical and experimental investigations. The mathematical models formulated by NOVITAS will be able to accurately describe the nonlinear (mainly geometrical) behaviour that this kind of structure typically show during their services, whereas current models fall short due to their time-consuming analyses. We will compare and validate the numerical results with those obtained by experiments, which consists of the creation of a prototype at the Space Structures Laboratory at Caltech, for the viscoelastic and thermal multiphysics testing and simulation of deployment phases to be simulated with a multibody approach. The developed modelling technique will provide engineers with an efficient way for the design of space structures, consistently with the space-based technological innovation necessary for the always more ambitious needs of our society and to encourage a sustainable European economy.

Status

SIGNED

Call topic

HORIZON-MSCA-2021-PF-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2021-PF-01
HORIZON-MSCA-2021-PF-01-01 MSCA Postdoctoral Fellowships 2021