PURAQUA | 3D Printed Fouling-Resistant Photoactive Membranes for Wastewater Treatment

Summary
Conventional wastewater treatment plants (WWTPs) are not effective in removing substances from our daily basis, acting as the main release point of Contaminants of Emerging Concerns (CECs), Antibiotic-Resistant Bacteria (ARB) and Antibiotic Resistance Genes (ARGs) to the environment. Aligned with sustainable development goals, recently, the European Commission approved minimum requirements at the European level to reuse safely treated wastewater as an alternative source for irrigation to cope with water scarcity. PURAQUA aims to enhance wastewater treatment efficiency at a lower cost by developing photoactive membranes with antifouling properties, through additive manufacturing, that can be applied as a post-treatment process after the conventional WWTPs. This challenge will be tackled by: i) producing new highly active and stable photoactive catalysts; ii) preparing antifouling membranes by addictive manufacturing; and iii) designing and developing a prototype reactor for wastewater treatment at continuous flow. The proper design and fabrication of 3D printed photoactive membranes will allow the generation of reactive species at the membrane surface for the oxidation of persistent pollutants, enhancing the water permeability at higher and more constant permeate flux with an impact on the treatment cost.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101065059
Start date: 15-06-2022
End date: 14-09-2024
Total budget - Public funding: - 172 618,00 Euro
Cordis data

Original description

Conventional wastewater treatment plants (WWTPs) are not effective in removing substances from our daily basis, acting as the main release point of Contaminants of Emerging Concerns (CECs), Antibiotic-Resistant Bacteria (ARB) and Antibiotic Resistance Genes (ARGs) to the environment. Aligned with sustainable development goals, recently, the European Commission approved minimum requirements at the European level to reuse safely treated wastewater as an alternative source for irrigation to cope with water scarcity. PURAQUA aims to enhance wastewater treatment efficiency at a lower cost by developing photoactive membranes with antifouling properties, through additive manufacturing, that can be applied as a post-treatment process after the conventional WWTPs. This challenge will be tackled by: i) producing new highly active and stable photoactive catalysts; ii) preparing antifouling membranes by addictive manufacturing; and iii) designing and developing a prototype reactor for wastewater treatment at continuous flow. The proper design and fabrication of 3D printed photoactive membranes will allow the generation of reactive species at the membrane surface for the oxidation of persistent pollutants, enhancing the water permeability at higher and more constant permeate flux with an impact on the treatment cost.

Status

SIGNED

Call topic

HORIZON-MSCA-2021-PF-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2021-PF-01
HORIZON-MSCA-2021-PF-01-01 MSCA Postdoctoral Fellowships 2021