Edit-hCOs | Precise Genome Editing to Correct Cardiomyopathies in Human Cardiac Organoids

Summary
Inherited cardiomyopathies are a major cause of sudden cardiac death and are caused by mutations in genes encoding sarcomeric proteins. With an incidence of 3 per 1,000 adults within the European population, inherited cardiomyopathies present a substantial burden to the healthcare services of all European nations. Although a few medications can slow the progression of the disease, today there is no cure for cardiomyopathies. The CRISPR-Cas9 precision genome editing technologies, base and prime editing, can permanently edit point mutations of genes, making them ideal tools to treat cardiomyopathies. To demonstrate the efficacies and therapeutic benefits of these editors in correcting cardiomyopathy-causing mutations, it is necessary to develop robust in vitro models of mature human cardiomyocytes that recapitulate the cellular complexity of the human heart. In the Edit-hCOs project, I will generate and characterize human cardiac organoids (hCOs) harboring clinically relevant cardiomyopathy-causing mutations in the FLNC gene, which encodes for the sarcomeric protein filamin C. hCOs will be generated as three-dimensional scaffold-free cardiac microtissues using tri-cellular combinations of human induced pluripotent stem cell -derived cardiomyocytes, cardiac fibroblasts, and cardiac endothelial cells. Then, I will deploy base and prime editors to fix common FLNC gene mutations in the hCOs, and I will characterize their molecular and functional improvements following correction. In addition, I will generate humanized mouse models harboring the same mutations as patients for future studies on delivery, therapeutic safety, and efficacy of the genome editing components in vivo. Completion of the Edit-hCOs project will allow me to establish a completely innovative and ambitious research line focused on the permanent treatment of cardiomyopathies. This will establish a crucial and important pre-clinical step towards therapeutic genome editing of cardiovascular diseases.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101063293
Start date: 01-10-2022
End date: 30-09-2024
Total budget - Public funding: - 188 590,00 Euro
Cordis data

Original description

Inherited cardiomyopathies are a major cause of sudden cardiac death and are caused by mutations in genes encoding sarcomeric proteins. With an incidence of 3 per 1,000 adults within the European population, inherited cardiomyopathies present a substantial burden to the healthcare services of all European nations. Although a few medications can slow the progression of the disease, today there is no cure for cardiomyopathies. The CRISPR-Cas9 precision genome editing technologies, base and prime editing, can permanently edit point mutations of genes, making them ideal tools to treat cardiomyopathies. To demonstrate the efficacies and therapeutic benefits of these editors in correcting cardiomyopathy-causing mutations, it is necessary to develop robust in vitro models of mature human cardiomyocytes that recapitulate the cellular complexity of the human heart. In the Edit-hCOs project, I will generate and characterize human cardiac organoids (hCOs) harboring clinically relevant cardiomyopathy-causing mutations in the FLNC gene, which encodes for the sarcomeric protein filamin C. hCOs will be generated as three-dimensional scaffold-free cardiac microtissues using tri-cellular combinations of human induced pluripotent stem cell -derived cardiomyocytes, cardiac fibroblasts, and cardiac endothelial cells. Then, I will deploy base and prime editors to fix common FLNC gene mutations in the hCOs, and I will characterize their molecular and functional improvements following correction. In addition, I will generate humanized mouse models harboring the same mutations as patients for future studies on delivery, therapeutic safety, and efficacy of the genome editing components in vivo. Completion of the Edit-hCOs project will allow me to establish a completely innovative and ambitious research line focused on the permanent treatment of cardiomyopathies. This will establish a crucial and important pre-clinical step towards therapeutic genome editing of cardiovascular diseases.

Status

SIGNED

Call topic

HORIZON-MSCA-2021-PF-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2021-PF-01
HORIZON-MSCA-2021-PF-01-01 MSCA Postdoctoral Fellowships 2021