VarCrysDef | Variational coarse-graining of lattice energies for crystal defects: Applications to partial dislocations and stacking faults

Summary
Defects are omnipresent in crystalline materials and the understanding of their emergence and interaction is essential for the prediction of the macroscopic material behaviour. Thus, there is a huge interest to pass in a rigorous mathematical way from atomistic models for crystal defects to macroscopic models, e.g., for crystal plasticity. From a variational viewpoint this can be addressed by deriving effective limiting energies from lattice energies when the lattice spacing vanishes. A powerful method to carry out such a variational coarse-graining procedure is Gamma-convergence. In this framework we address here the variational coarse graining of lattice energies which capture the formation and interaction of defects of different dimension, namely partial dislocations and stacking faults. The splitting of dislocations into partial dislocations resulting in a stacking fault is a typical phenomenon of closed-packed crystalline structures. Thus, on the one hand we aim at proposing and analysing a suitable discrete model for partial dislocations and stacking faults in HCP, on the other hand we will embed this result into a broader context by investigating in a general framework the emergence of fractional vortices and string defects in XY-model type energies. Eventually, we will characterise geometric properties of minimisers for the coarse-grained energies.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101065771
Start date: 01-10-2022
End date: 30-09-2024
Total budget - Public funding: - 172 750,00 Euro
Cordis data

Original description

Defects are omnipresent in crystalline materials and the understanding of their emergence and interaction is essential for the prediction of the macroscopic material behaviour. Thus, there is a huge interest to pass in a rigorous mathematical way from atomistic models for crystal defects to macroscopic models, e.g., for crystal plasticity. From a variational viewpoint this can be addressed by deriving effective limiting energies from lattice energies when the lattice spacing vanishes. A powerful method to carry out such a variational coarse-graining procedure is Gamma-convergence. In this framework we address here the variational coarse graining of lattice energies which capture the formation and interaction of defects of different dimension, namely partial dislocations and stacking faults. The splitting of dislocations into partial dislocations resulting in a stacking fault is a typical phenomenon of closed-packed crystalline structures. Thus, on the one hand we aim at proposing and analysing a suitable discrete model for partial dislocations and stacking faults in HCP, on the other hand we will embed this result into a broader context by investigating in a general framework the emergence of fractional vortices and string defects in XY-model type energies. Eventually, we will characterise geometric properties of minimisers for the coarse-grained energies.

Status

TERMINATED

Call topic

HORIZON-MSCA-2021-PF-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2021-PF-01
HORIZON-MSCA-2021-PF-01-01 MSCA Postdoctoral Fellowships 2021