OSCILLIGHT | Mechanical torsional oscillations driven by the angular momentum of light

Summary
The ability of light to carry angular momentum has been the subject of an active scientific research since the beginning of 20th century, and yet the knowledge in this area still has many gaps and overlooked possibilities for technological innovation. In particular, a non-dissipative technology enabling an optomechanical transduction of the angular momentum irrespective of its spin or orbital nature is yet to be achieved. The project “OSCILLIGHT” offers an original solution to this problem by exploiting the inherent vector nature of angular momentum. During the two-year fellowship at University of Bordeaux (France), Dr. Georgiy Tkachenko (Researcher) guided by Dr. Etienne Brasselet (Supervisor) will realize proof-of-concept experimental demonstrations of the universal transfer of angular momentum that will lead to the implementation of a mechanical oscillator, whose size will eventually make it compatible with on-chip photonic systems. This work will therefore answer the key strategic orientation of the European Commission towards the development of digital, enabling and emerging technologies for micro/nanoelectronics and photonics.
The proposed research is timely, as the scientific literature over the last 5 years has seen the increasing emergence of studies on integrated optomechanical devices, including those driven by angular momentum of light. After the last few years of the relevant preparatory work done by the Supervisor, his students and collaborators, the stage is now set for an effective implementation of this proposal, and the Researcher is the perfect candidate for the leading role to be played under the Supervisor’s guidance. Most importantly, the successful realization of this project will be beneficial to both the host university and the Researcher’s career path to securing a stable academic position and eventually leading his own research group.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101067165
Start date: 01-05-2023
End date: 30-04-2025
Total budget - Public funding: - 211 754,00 Euro
Cordis data

Original description

The ability of light to carry angular momentum has been the subject of an active scientific research since the beginning of 20th century, and yet the knowledge in this area still has many gaps and overlooked possibilities for technological innovation. In particular, a non-dissipative technology enabling an optomechanical transduction of the angular momentum irrespective of its spin or orbital nature is yet to be achieved. The project “OSCILLIGHT” offers an original solution to this problem by exploiting the inherent vector nature of angular momentum. During the two-year fellowship at University of Bordeaux (France), Dr. Georgiy Tkachenko (Researcher) guided by Dr. Etienne Brasselet (Supervisor) will realize proof-of-concept experimental demonstrations of the universal transfer of angular momentum that will lead to the implementation of a mechanical oscillator, whose size will eventually make it compatible with on-chip photonic systems. This work will therefore answer the key strategic orientation of the European Commission towards the development of digital, enabling and emerging technologies for micro/nanoelectronics and photonics.
The proposed research is timely, as the scientific literature over the last 5 years has seen the increasing emergence of studies on integrated optomechanical devices, including those driven by angular momentum of light. After the last few years of the relevant preparatory work done by the Supervisor, his students and collaborators, the stage is now set for an effective implementation of this proposal, and the Researcher is the perfect candidate for the leading role to be played under the Supervisor’s guidance. Most importantly, the successful realization of this project will be beneficial to both the host university and the Researcher’s career path to securing a stable academic position and eventually leading his own research group.

Status

SIGNED

Call topic

HORIZON-MSCA-2021-PF-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2021-PF-01
HORIZON-MSCA-2021-PF-01-01 MSCA Postdoctoral Fellowships 2021