SMARTBATT | Smart electrolyte with inherent flame-retardancy for next generation fire-safe lithium-ion batteries.

Summary
Despite significant advancement in other characteristic requirements of rechargeable lithium-ion batteries (LIBs), safety threats to the rechargeable LIBs still persist. Main challenge of the safety concerns related to LIBs is heat accumulation during thermal runaway inside the cells, which is difficult to be eliminated due to poor thermal management associated with current technologies. In this context, the overarching aim of this ambitious yet achievable project (SMARTBATT) is to develop a thermoreversible liquid-solid transition (TLST) electrolyte integrated with inherent flame-retardancy for LIBs. The new idea of SMARTBATT is to design and synthesis flame-retardant thermoreversible liquid-solid transition electrolytes via the principals of the chemical Michael addition reaction (to incorporate flame retardant into electrolytes) and chemical Diels-Alder addition reaction (to produce liquid-solid transition in the electrolytes). In details, TLST will be comprised of Li-salt dissolved in a mixture of two organic solvents-vinylene carbonate and 2,5-dimethylfuran; as internal temperature of LIBs increases, both organic solvents will undergo a Diels-Alder addition reaction to form a supramolecular crosslinked network, as a result there will be a significant diminution in Li+ ion conductivity, led LIBs to non-operational mode. Moreover, TLST functionalized with 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) will offer excellent flame-retardancy to the electrolytes as fire hazard of LIBs appears. SMARTBATT is multidisciplinary and requires complementary expertise from the host (Polymer Chemistry and Physics, Fire Retardant Materials) and the researcher (Electrochemistry, Battery), is contributing to the new generation of LIBs, following the priorities of the Europe 2020 Strategy regarding reaching a Smart, Sustainable and inclusive growth and European BATTERY 2030+, and aligned with some specific priorities of Cluster 5 Framework Programme Horizon Europe.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101066532
Start date: 01-04-2023
End date: 31-05-2025
Total budget - Public funding: - 181 152,00 Euro
Cordis data

Original description

Despite significant advancement in other characteristic requirements of rechargeable lithium-ion batteries (LIBs), safety threats to the rechargeable LIBs still persist. Main challenge of the safety concerns related to LIBs is heat accumulation during thermal runaway inside the cells, which is difficult to be eliminated due to poor thermal management associated with current technologies. In this context, the overarching aim of this ambitious yet achievable project (SMARTBATT) is to develop a thermoreversible liquid-solid transition (TLST) electrolyte integrated with inherent flame-retardancy for LIBs. The new idea of SMARTBATT is to design and synthesis flame-retardant thermoreversible liquid-solid transition electrolytes via the principals of the chemical Michael addition reaction (to incorporate flame retardant into electrolytes) and chemical Diels-Alder addition reaction (to produce liquid-solid transition in the electrolytes). In details, TLST will be comprised of Li-salt dissolved in a mixture of two organic solvents-vinylene carbonate and 2,5-dimethylfuran; as internal temperature of LIBs increases, both organic solvents will undergo a Diels-Alder addition reaction to form a supramolecular crosslinked network, as a result there will be a significant diminution in Li+ ion conductivity, led LIBs to non-operational mode. Moreover, TLST functionalized with 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) will offer excellent flame-retardancy to the electrolytes as fire hazard of LIBs appears. SMARTBATT is multidisciplinary and requires complementary expertise from the host (Polymer Chemistry and Physics, Fire Retardant Materials) and the researcher (Electrochemistry, Battery), is contributing to the new generation of LIBs, following the priorities of the Europe 2020 Strategy regarding reaching a Smart, Sustainable and inclusive growth and European BATTERY 2030+, and aligned with some specific priorities of Cluster 5 Framework Programme Horizon Europe.

Status

SIGNED

Call topic

HORIZON-MSCA-2021-PF-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2021-PF-01
HORIZON-MSCA-2021-PF-01-01 MSCA Postdoctoral Fellowships 2021