PHOLED | Comprehensive photophysical study of lead-free halide perovskite nanocrystals: towards eco-friendly and high-performance light-emitting diodes

Summary
This project (PHOLED) will concentrate on lead-free halide perovskite nanomaterials for their light-emitting diodes (LEDs) application to address the current low-performance issue. The focus of this project will be the synthesis of novel lead-free layered halide double perovskite nanocrystals with surface engineering, and the corresponding mechanism studies, which account for the fabrication of high-performance perovskite LEDs (PeLEDs). PHOLED will combine multidisciplinary research crossing synthetic chemistry, surface chemistry, electrochemistry, photophysics, and optoelectronics. The completion of PHOLED will result in the generation of new knowledge to synthesize novel lead-free perovskite nanocrystals with outstanding optoelectronic properties which can provide crucial hints for chemists to enable further optimization of high-quality lead-free perovskite nanomaterials. An achievement of low-cost and high-performance lead-free-based PeLEDs from PHOLED will significantly highlight the possibility of the replacement of conventional LEDs that are made of exotic semiconductors such as gallium arsenide and gallium phosphide. The replacement of toxic lead by less- or non-toxic lead-free metals achieved by PHOLED will also have benefits for both environment and human beings. This fellowship will allow the researcher to incorporate the study of emerging lead-free perovskite nanomaterials-based LEDs into his research profile, broaden his knowledge and offer the researcher further expertise in the fields of eco-friendly, low-cost, and high-performance PeLEDs, opening new horizons for expanding his career prospects. New technical skills and expertise obtained during the fellowship in the beneficiary institute will strengthen the researcher's experimental capabilities and exploit new opportunities in multidisciplinary research domains. This fellowship will also broaden the researcher's networks with world-leading groups in the research of metal halide perovskite-based LEDs.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101063085
Start date: 01-03-2023
End date: 28-02-2025
Total budget - Public funding: - 222 727,00 Euro
Cordis data

Original description

This project (PHOLED) will concentrate on lead-free halide perovskite nanomaterials for their light-emitting diodes (LEDs) application to address the current low-performance issue. The focus of this project will be the synthesis of novel lead-free layered halide double perovskite nanocrystals with surface engineering, and the corresponding mechanism studies, which account for the fabrication of high-performance perovskite LEDs (PeLEDs). PHOLED will combine multidisciplinary research crossing synthetic chemistry, surface chemistry, electrochemistry, photophysics, and optoelectronics. The completion of PHOLED will result in the generation of new knowledge to synthesize novel lead-free perovskite nanocrystals with outstanding optoelectronic properties which can provide crucial hints for chemists to enable further optimization of high-quality lead-free perovskite nanomaterials. An achievement of low-cost and high-performance lead-free-based PeLEDs from PHOLED will significantly highlight the possibility of the replacement of conventional LEDs that are made of exotic semiconductors such as gallium arsenide and gallium phosphide. The replacement of toxic lead by less- or non-toxic lead-free metals achieved by PHOLED will also have benefits for both environment and human beings. This fellowship will allow the researcher to incorporate the study of emerging lead-free perovskite nanomaterials-based LEDs into his research profile, broaden his knowledge and offer the researcher further expertise in the fields of eco-friendly, low-cost, and high-performance PeLEDs, opening new horizons for expanding his career prospects. New technical skills and expertise obtained during the fellowship in the beneficiary institute will strengthen the researcher's experimental capabilities and exploit new opportunities in multidisciplinary research domains. This fellowship will also broaden the researcher's networks with world-leading groups in the research of metal halide perovskite-based LEDs.

Status

CLOSED

Call topic

HORIZON-MSCA-2021-PF-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2021-PF-01
HORIZON-MSCA-2021-PF-01-01 MSCA Postdoctoral Fellowships 2021