Summary
Spinal cord injury (SCI) is a debilitating health conditions affecting circa 27.04 million people globally including 6.4 million Europeans with serious impact on the quality of life and socio-economic status of the patients. Existing regenerative and rehabilitation approaches are largely palliative and neuroprotective, targeting the spared neural tissue after injury with limited efficacy in regeneration. While the spinal cord has poor regenerative ability, the degenerative processes further complicate the SCI pathophysiology. Hence, no regenerative and rehabilitation approaches, individually, have resulted in complete and near complete functional recovery to date. To fully restore the injured spinal cord's functionality, a coordinated combinational approach addressing particular degenerative processes is necessary. Herein, the fellow proposes to develop a regenerative-rehabilitation combinational approach to maximize the functional regenerative outcome after SCI using minimally invasive injectable electroconductive hydrogels (ECHs) functionalized with neurotrophins (NTs) and anti-inflammatory cytokines in combination with electrical stimulation (ES) and near infrared (NIR) laser stimulation. ES and NIR laser through the ECH will be used to stimulate the neurons and glial cells to enhance regeneration and neuroplasticity as well as for on demand delivery of biologics to target the inhibitory processes. This proposal describes the project's multidisciplinary nature, execution and management of the project by the fellow and the multiple collaborators who will each provide the fellow with cutting-edge research skills. The goals of the fellow’s project place specific focus to ensure that the training of the fellow brings him to a level of competitive scientific excellence at international level.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101067283 |
Start date: | 01-02-2023 |
End date: | 31-01-2025 |
Total budget - Public funding: | - 215 534,00 Euro |
Cordis data
Original description
Spinal cord injury (SCI) is a debilitating health conditions affecting circa 27.04 million people globally including 6.4 million Europeans with serious impact on the quality of life and socio-economic status of the patients. Existing regenerative and rehabilitation approaches are largely palliative and neuroprotective, targeting the spared neural tissue after injury with limited efficacy in regeneration. While the spinal cord has poor regenerative ability, the degenerative processes further complicate the SCI pathophysiology. Hence, no regenerative and rehabilitation approaches, individually, have resulted in complete and near complete functional recovery to date. To fully restore the injured spinal cord's functionality, a coordinated combinational approach addressing particular degenerative processes is necessary. Herein, the fellow proposes to develop a regenerative-rehabilitation combinational approach to maximize the functional regenerative outcome after SCI using minimally invasive injectable electroconductive hydrogels (ECHs) functionalized with neurotrophins (NTs) and anti-inflammatory cytokines in combination with electrical stimulation (ES) and near infrared (NIR) laser stimulation. ES and NIR laser through the ECH will be used to stimulate the neurons and glial cells to enhance regeneration and neuroplasticity as well as for on demand delivery of biologics to target the inhibitory processes. This proposal describes the project's multidisciplinary nature, execution and management of the project by the fellow and the multiple collaborators who will each provide the fellow with cutting-edge research skills. The goals of the fellow’s project place specific focus to ensure that the training of the fellow brings him to a level of competitive scientific excellence at international level.Status
SIGNEDCall topic
HORIZON-MSCA-2021-PF-01-01Update Date
09-02-2023
Images
No images available.
Geographical location(s)