DeepBMS | Deep Reinforcement Learning-Based Battery Management System for Electric Vehicles

Summary
Battery Management System (BMS) plays a pivotal role in monitoring, control, and protecting the Electric Vehicle (EV) Lithium-ion battery packs. In vehicular applications, batteries are usually subjected to harsh operating cycles and varying environmental conditions leading to very complicated interactions of different aging factors and unforeseeable modeling uncertainties. Therefore, the classical model-based techniques cannot completely handle the foregoing factors, which always leave an unwanted state estimation error in the BMS. This project intends to apply a multidisciplinary approach by combining the advantages of deep reinforcement learning and classical model-based techniques to improve the BMS functionality in EVs. Specifically, DeepBMS aims to: 1-Develop efficient deep reinforcement learning-based algorithms which are able to capture the convoluted time-varying behavior of battery and can gradually improve themselves by learning in real-time 2- Combine the beneficial features of model-based and data-driven techniques to improve the state estimation accuracy in a wide temperature range and over the full life span of the batteries, thereby increasing the reliability and extending the battery lifetime. The interdisciplinary nature of DeepBMS is very strong, involving a combination of control and state estimation theory, power electronics, battery storage systems, and machine learning. The supervisor and candidate have excellent complemental research experiences in these fields providing the necessary competencies to bring the project to successful completion. The project ensures two-way transfer of knowledge including training of the candidate in cutting-edge advanced techniques in a state-of-the-art laboratory, which improves his future career prospects. Likewise, DeepBMS is in line with the EU strategic action plan on batteries and its results have a great potential to be further developed at the fundamental and applied levels through follow-up research.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101064083
Start date: 15-03-2023
End date: 14-03-2025
Total budget - Public funding: - 230 774,00 Euro
Cordis data

Original description

Battery Management System (BMS) plays a pivotal role in monitoring, control, and protecting the Electric Vehicle (EV) Lithium-ion battery packs. In vehicular applications, batteries are usually subjected to harsh operating cycles and varying environmental conditions leading to very complicated interactions of different aging factors and unforeseeable modeling uncertainties. Therefore, the classical model-based techniques cannot completely handle the foregoing factors, which always leave an unwanted state estimation error in the BMS. This project intends to apply a multidisciplinary approach by combining the advantages of deep reinforcement learning and classical model-based techniques to improve the BMS functionality in EVs. Specifically, DeepBMS aims to: 1-Develop efficient deep reinforcement learning-based algorithms which are able to capture the convoluted time-varying behavior of battery and can gradually improve themselves by learning in real-time 2- Combine the beneficial features of model-based and data-driven techniques to improve the state estimation accuracy in a wide temperature range and over the full life span of the batteries, thereby increasing the reliability and extending the battery lifetime. The interdisciplinary nature of DeepBMS is very strong, involving a combination of control and state estimation theory, power electronics, battery storage systems, and machine learning. The supervisor and candidate have excellent complemental research experiences in these fields providing the necessary competencies to bring the project to successful completion. The project ensures two-way transfer of knowledge including training of the candidate in cutting-edge advanced techniques in a state-of-the-art laboratory, which improves his future career prospects. Likewise, DeepBMS is in line with the EU strategic action plan on batteries and its results have a great potential to be further developed at the fundamental and applied levels through follow-up research.

Status

SIGNED

Call topic

HORIZON-MSCA-2021-PF-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2021-PF-01
HORIZON-MSCA-2021-PF-01-01 MSCA Postdoctoral Fellowships 2021