IMPROVE | IMaging PROstate cancer using ViscoElastic biomarkers and a novel transurethral viscoelastic elastography procedure

Summary
IMPROVE aims to demonstrate the potentiality of Transurethral Shear Wave Viscoelastic Elastography (TUSWAVE) for ‘improving’ the diagnosis of Prostate Cancer (PCa) by identifying it through a new set of biomarkers based on the fractional viscoelastic properties of the prostate. TUSWAVE is a novel concept based on the transmission and reception of shear waves in the prostate through the urethra. Most prostatic tumours are stiffer than normal surrounding tissue, which perturbs the propagation of shear waves. The perturbed waves carry information about the location and changes in the viscoelastic properties of the tumours. IMPROVE aims to further study the correlation between diagnosis features of prostate cancer, such as grade, stage and vascularisation, with shear fractional viscoelastic properties of the prostate, i.e. the shear modulus, the shear viscosity and the fractional-order parameter. To achieve IMPROVE’s goal three main work packages are proposed. First, the development of a 3D anatomically realistic wave propagation model validated in ex vivo human prostate; second, the characterisation of the fractional viscoelastic properties of prostatic tissue under different pathological conditions using Shear Wave Elastography and validated against independent techniques; and finally, the development of a preliminary Artificial Intelligence-based image reconstruction method for TUSWAVE. A large database of prostate cancer clinical scenarios will be generated using the data from the characterisation study and the 3D wave propagation model. This database will be used to train and test the image reconstruction method. Prostate-like phantoms will be used to test the performance of the image reconstruction method. IMPROVE will take TUSWAVE towards a pre-clinical studies stage. IMPROVE is aligned with the mission area 'cancer' set on Horizon Europe.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101062897
Start date: 01-09-2023
End date: 31-08-2025
Total budget - Public funding: - 181 152,00 Euro
Cordis data

Original description

IMPROVE aims to demonstrate the potentiality of Transurethral Shear Wave Viscoelastic Elastography (TUSWAVE) for ‘improving’ the diagnosis of Prostate Cancer (PCa) by identifying it through a new set of biomarkers based on the fractional viscoelastic properties of the prostate. TUSWAVE is a novel concept based on the transmission and reception of shear waves in the prostate through the urethra. Most prostatic tumours are stiffer than normal surrounding tissue, which perturbs the propagation of shear waves. The perturbed waves carry information about the location and changes in the viscoelastic properties of the tumours. IMPROVE aims to further study the correlation between diagnosis features of prostate cancer, such as grade, stage and vascularisation, with shear fractional viscoelastic properties of the prostate, i.e. the shear modulus, the shear viscosity and the fractional-order parameter. To achieve IMPROVE’s goal three main work packages are proposed. First, the development of a 3D anatomically realistic wave propagation model validated in ex vivo human prostate; second, the characterisation of the fractional viscoelastic properties of prostatic tissue under different pathological conditions using Shear Wave Elastography and validated against independent techniques; and finally, the development of a preliminary Artificial Intelligence-based image reconstruction method for TUSWAVE. A large database of prostate cancer clinical scenarios will be generated using the data from the characterisation study and the 3D wave propagation model. This database will be used to train and test the image reconstruction method. Prostate-like phantoms will be used to test the performance of the image reconstruction method. IMPROVE will take TUSWAVE towards a pre-clinical studies stage. IMPROVE is aligned with the mission area 'cancer' set on Horizon Europe.

Status

SIGNED

Call topic

HORIZON-MSCA-2021-PF-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2021-PF-01
HORIZON-MSCA-2021-PF-01-01 MSCA Postdoctoral Fellowships 2021