electorsDDADM | Diaminodicyanoanthroquinodimethanes: Electrically driven molecular micromotors

Summary
Electric field-powered Micro/Nano motors (e-MNMs) are tiny devices that convert electric energy into mechanical movements. e-MNMs are the potential candidates for the range of applications from physics to biology. Most of the existing e-MNMs have been shown to propel in various fuel media, like H2O2, hydrazine, and hydroquinone, limiting their toxicity applications. The majority of their fabrication processes are expensive, time-consuming, and complicated, highlighting the need for a simple fabrication approach to devise eco-friendly e-MNMs. This proposal aims to develop a new strategy for fabricating electric field responsive asymmetric molecular microparticles using a simple fabrication technique and analyzing their motions in the presence of the electric field without an additional fuel medium. For the first time, we will employ the simple ‘reprecipitation technique’ to incorporate the gold nanoparticles into the asymmetric crystals of strongly zwitterionic diaminodicyanoanthroquinodimethane (DDADM) derivatives and employ them as micromotors under the electric field. The essential determinants for developing asymmetric morphologies will be a non-centrosymmetric assembly of dipolar molecules, non-equilibrium conditions, and local supersaturation during the reprecipitation technique; further examples will need to establish it conclusively. Molecular e-MNMs will be expected to exhibit high-speed motions (~ 30 to 100 times of the body length S-1) under a low electric field (50-180 V/cm). It will be proposed that the concentration gradient of the polar DDADM molecules and trapped gold nanoparticles across the asymmetric crystal can induce charge dielectrophoresis force in the presence of an electric field that could facilitate the mechanical motions of e-MNMs in the water. An empirical model will be developed for the mechanistic understanding of the actuation process and insight into the response of the DDADM molecules under the electric field.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101063710
Start date: 01-10-2022
End date: 30-09-2024
Total budget - Public funding: - 166 278,00 Euro
Cordis data

Original description

Electric field-powered Micro/Nano motors (e-MNMs) are tiny devices that convert electric energy into mechanical movements. e-MNMs are the potential candidates for the range of applications from physics to biology. Most of the existing e-MNMs have been shown to propel in various fuel media, like H2O2, hydrazine, and hydroquinone, limiting their toxicity applications. The majority of their fabrication processes are expensive, time-consuming, and complicated, highlighting the need for a simple fabrication approach to devise eco-friendly e-MNMs. This proposal aims to develop a new strategy for fabricating electric field responsive asymmetric molecular microparticles using a simple fabrication technique and analyzing their motions in the presence of the electric field without an additional fuel medium. For the first time, we will employ the simple ‘reprecipitation technique’ to incorporate the gold nanoparticles into the asymmetric crystals of strongly zwitterionic diaminodicyanoanthroquinodimethane (DDADM) derivatives and employ them as micromotors under the electric field. The essential determinants for developing asymmetric morphologies will be a non-centrosymmetric assembly of dipolar molecules, non-equilibrium conditions, and local supersaturation during the reprecipitation technique; further examples will need to establish it conclusively. Molecular e-MNMs will be expected to exhibit high-speed motions (~ 30 to 100 times of the body length S-1) under a low electric field (50-180 V/cm). It will be proposed that the concentration gradient of the polar DDADM molecules and trapped gold nanoparticles across the asymmetric crystal can induce charge dielectrophoresis force in the presence of an electric field that could facilitate the mechanical motions of e-MNMs in the water. An empirical model will be developed for the mechanistic understanding of the actuation process and insight into the response of the DDADM molecules under the electric field.

Status

SIGNED

Call topic

HORIZON-MSCA-2021-PF-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2021-PF-01
HORIZON-MSCA-2021-PF-01-01 MSCA Postdoctoral Fellowships 2021