MHz-TOMOSCOPY | MHz rate mulTiple prOjection X-ray MicrOSCOPY

Summary
Modern enabling technologies, such as additive manufacturing or cavitation peening used in the aerospace and automotive industries, suffer from a lack of diagnostic tools. To date, one cannot provide relevant volumetric information about the fast processes involved. The realization of this project will break the current limits in fast, 4D X-ray microscopy by three orders of magnitude. It will be possible to visualize and characterize dynamics reaching velocities up to ~km/s for the first time with micron-scale resolutions. Instead of sample rotation, we will generate multiple X-ray probes and virtually rotate them around the sample to obtain with a single exposure multiple angular views simultaneously. Using modern X-ray sources with very high brilliance, each such 3D frame may be sampled at kHz rates at synchrotrons and even MHz rates at X-ray free-electron laser sources. This will unlock access to 4D observation of processes with velocities never before possible. 4D imaging of opaque samples at MHz rates enables insights across a range of sectors and industries. In cavitation peening, an industrially relevant phenomenon for aerospace and new materials, we have no volumetric information, due to its high speed. This breakthrough will be achieved by the construction of a prototype that will demonstrate MHz rate tomoscopy at the European XFEL, taking advantage of world-unique European laboratories for the benefit of industry. Observing MHz-fast phenomena in opaque samples enables an entirely new branch of research, with possibilities for all sectors where such fast phenomena has, to date, been left to simulations and speculations. For industry and society, it would open new possibilities in the development and management of several techniques, including laser driven additive manufacturing, shock waves, fractures, evaporation, light alloy metallurgy, fast fluid dynamics, and cavitation phenomena.
Results, demos, etc. Show all and search (10)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101046448
Start date: 01-06-2022
End date: 30-11-2025
Total budget - Public funding: 3 154 350,00 Euro - 3 154 350,00 Euro
Cordis data

Original description

Modern enabling technologies, such as additive manufacturing or cavitation peening used in the aerospace and automotive industries, suffer from a lack of diagnostic tools. To date, one cannot provide relevant volumetric information about the fast processes involved. The realization of this project will break the current limits in fast, 4D X-ray microscopy by three orders of magnitude. It will be possible to visualize and characterize dynamics reaching velocities up to ~km/s for the first time with micron-scale resolutions. Instead of sample rotation, we will generate multiple X-ray probes and virtually rotate them around the sample to obtain with a single exposure multiple angular views simultaneously. Using modern X-ray sources with very high brilliance, each such 3D frame may be sampled at kHz rates at synchrotrons and even MHz rates at X-ray free-electron laser sources. This will unlock access to 4D observation of processes with velocities never before possible. 4D imaging of opaque samples at MHz rates enables insights across a range of sectors and industries. In cavitation peening, an industrially relevant phenomenon for aerospace and new materials, we have no volumetric information, due to its high speed. This breakthrough will be achieved by the construction of a prototype that will demonstrate MHz rate tomoscopy at the European XFEL, taking advantage of world-unique European laboratories for the benefit of industry. Observing MHz-fast phenomena in opaque samples enables an entirely new branch of research, with possibilities for all sectors where such fast phenomena has, to date, been left to simulations and speculations. For industry and society, it would open new possibilities in the development and management of several techniques, including laser driven additive manufacturing, shock waves, fractures, evaporation, light alloy metallurgy, fast fluid dynamics, and cavitation phenomena.

Status

SIGNED

Call topic

HORIZON-EIC-2021-PATHFINDEROPEN-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)