TECHNO-CLS | Emerging technologies for crystal-based gamma-ray light sources

Summary
TECHNO-CLS project at the breakthrough in technologies needed for designing and practical realisation of novel gamma-ray Light Sources (LS) operating at photon energies from ~100 keV up to GeV range that can be constructed through exposure of oriented crystals (linear, bent and periodically bent) to the beams of ultrarelativistic charged particles. The TECHNO-CLS high-risk/high-gain science-towards-technology breakthrough research programme will address the physics of the processes accompanying the oriented crystal exposure to irradiation by the high-energy electron and positron beams at the atomistic level of detail needed for the realisation of the TECHNO-CLS goals. A broad interdisciplinary, international collaboration has been created previously in the frame of FP7 and H2020 projects, which performed initial experimental tests to demonstrate the crystalline undulator (CU) idea, production and characterisation of periodically bent crystals and the related theory. TECHNO-CLS aims to build the high-risk/high-gain science-towards-technology breakthrough research programme on these successful studies aiming at a practical realisation of the novel gamma-ray LSs such as CUs, crystalline synchrotron radiation emitters, and many others. Additionally, by means of a pre-bunched beam a CU LS has a potential to generate coherent superrradiant radiation with wavelengths orders of magnitudes less than 1 Angstrom, i.e. within the range that cannot be reached in existing LSs based on magnetic undulators. Such LSs will have many applications in the basic sciences including nuclear and solid-state physics and the life sciences. Theoretical, computational, experimental and technological results obtained in the course of this project will pave a way for key technological developments of the LSs and their wide exploitation. The TECHNO-CLS international collaboration possesses all the necessary expertise to conduct successfully the outlined programme.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101046458
Start date: 01-06-2022
End date: 31-05-2027
Total budget - Public funding: 2 643 187,50 Euro - 2 643 187,00 Euro
Cordis data

Original description

TECHNO-CLS project at the breakthrough in technologies needed for designing and practical realisation of novel gamma-ray Light Sources (LS) operating at photon energies from ~100 keV up to GeV range that can be constructed through exposure of oriented crystals (linear, bent and periodically bent) to the beams of ultrarelativistic charged particles. The TECHNO-CLS high-risk/high-gain science-towards-technology breakthrough research programme will address the physics of the processes accompanying the oriented crystal exposure to irradiation by the high-energy electron and positron beams at the atomistic level of detail needed for the realisation of the TECHNO-CLS goals. A broad interdisciplinary, international collaboration has been created previously in the frame of FP7 and H2020 projects, which performed initial experimental tests to demonstrate the crystalline undulator (CU) idea, production and characterisation of periodically bent crystals and the related theory. TECHNO-CLS aims to build the high-risk/high-gain science-towards-technology breakthrough research programme on these successful studies aiming at a practical realisation of the novel gamma-ray LSs such as CUs, crystalline synchrotron radiation emitters, and many others. Additionally, by means of a pre-bunched beam a CU LS has a potential to generate coherent superrradiant radiation with wavelengths orders of magnitudes less than 1 Angstrom, i.e. within the range that cannot be reached in existing LSs based on magnetic undulators. Such LSs will have many applications in the basic sciences including nuclear and solid-state physics and the life sciences. Theoretical, computational, experimental and technological results obtained in the course of this project will pave a way for key technological developments of the LSs and their wide exploitation. The TECHNO-CLS international collaboration possesses all the necessary expertise to conduct successfully the outlined programme.

Status

SIGNED

Call topic

HORIZON-EIC-2021-PATHFINDEROPEN-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.3 Innovative Europe
HORIZON.3.1 The European Innovation Council (EIC)
HORIZON.3.1.1 The Pathfinder for Advanced Research
HORIZON-EIC-2021-PATHFINDEROPEN-01
HORIZON-EIC-2021-PATHFINDEROPEN-01-01 EIC Pathfinder Open 2021