NanoXCAN | Nanoscale virus imaging X-ray microscope based on incoherent diffraction

Summary
Coronavirus disease (COVID-19) is an infectious disease that emerged in late 2019. By March 2020, the outbreak was declared a devastating pandemic and clearly illustrated the threat that viruses pose to our society. The characterization of viral structures and the identification of key proteins involved in each step of the cycle of infection are crucial to developing treatments. Yet imaging single viruses can only be performed in a few specialized centers in Europe, while every hospital could benefit from it.  NanoXCAN proposes to develop a tabletop virus imaging X-ray microscope, with foreseeable impact as revolutionary as the invention of super-resolved fluorescence microscopy, paving the way towards determination of structure and dynamics of matter to a large community. For this purpose, we will develop an original digital laser that delivers, on a daily operation, subwavelength focusing, reaching relativistic intensities at MHz repetition rates. This will be used to create a nano-source of hard X-rays from the Kalpha plasma emission of metallic nano-targets at an average power comparable to that of a synchrotron beamline.  We will capitalize on this high brilliance, high average power hard X-ray source to perform lensless nanoscale biomedical imaging based on recent findings in incoherent imaging and machine learning. All these ingredients will create a unique nanoscopy platform that our consortium will illustrate by imaging a single virus. In the future, our X-ray IDI microscope could help to study mechanisms involved in viral infection and antiviral design. X-rays have the advantage of performing in-situ non-destructive and non-invasive imaging over competing techniques. NanoXCAN will create a transformative positive effect on our economy and society by proposing this new technology for single virus imaging.
Results, demos, etc. Show all and search (0)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101047223
Start date: 01-05-2022
End date: 30-04-2026
Total budget - Public funding: 3 723 551,00 Euro - 3 723 551,00 Euro
Cordis data

Original description

Coronavirus disease (COVID-19) is an infectious disease that emerged in late 2019. By March 2020, the outbreak was declared a devastating pandemic and clearly illustrated the threat that viruses pose to our society. The characterization of viral structures and the identification of key proteins involved in each step of the cycle of infection are crucial to developing treatments. Yet imaging single viruses can only be performed in a few specialized centers in Europe, while every hospital could benefit from it.  NanoXCAN proposes to develop a tabletop virus imaging X-ray microscope, with foreseeable impact as revolutionary as the invention of super-resolved fluorescence microscopy, paving the way towards determination of structure and dynamics of matter to a large community. For this purpose, we will develop an original digital laser that delivers, on a daily operation, subwavelength focusing, reaching relativistic intensities at MHz repetition rates. This will be used to create a nano-source of hard X-rays from the Kalpha plasma emission of metallic nano-targets at an average power comparable to that of a synchrotron beamline.  We will capitalize on this high brilliance, high average power hard X-ray source to perform lensless nanoscale biomedical imaging based on recent findings in incoherent imaging and machine learning. All these ingredients will create a unique nanoscopy platform that our consortium will illustrate by imaging a single virus. In the future, our X-ray IDI microscope could help to study mechanisms involved in viral infection and antiviral design. X-rays have the advantage of performing in-situ non-destructive and non-invasive imaging over competing techniques. NanoXCAN will create a transformative positive effect on our economy and society by proposing this new technology for single virus imaging.

Status

SIGNED

Call topic

HORIZON-EIC-2021-PATHFINDEROPEN-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)