PRINGLE | Protein-based next generation electronics

Summary
Recently, an entirely novel type of bacteria has been discovered that can guide high electrical currents over centimeter-long distances through long, thin fibers embedded in the cell envelope. Recent studies by PRINGLE consortium members reveal that these protein fibers possess extraordinarRecently, an entirely novel type of bacteria has been discovered that can guide high electrical currents over centimeter-long distances through long, thin fibers embedded in the cell envelope. Recent studies by PRINGLE consortium members reveal that these protein fibers possess extraordinary electrical properties, including an electrical conductivity that exceeds that of any known biological material by orders of magnitude. The ambition of PRINGLE is to unlock the vast technological potential of this newly discovered biomaterial. To this end, we propose to utilize custom-crafted protein structures as elementary active and passive components in a new generation of biocompatible and biodegradable electronic devices. The resulting long-term technological vision is to establish a radically new type of electronics (PROTEONICS) that is entirely bio-based and CO2 neutral, and in which protein components can provide different all types of electronic functionality. PRINGLE will provide the fundamental and technological basis for PROTEONICS by (1) developing fabrication and patterning technologies for proteonic materials and nanostructures, (2) tuning the electronic properties of these proteonic materials in a fit-for-purpose manner, and (3) integrating proteonic materials as functional components into all-protein electronic devices. As such, PRINGLE-based technology could provide a significant breakthrough towards next generation electronics applications in a circular economy, opening entirely new avenues for interfacing biological systems with electronics and allowing completely new sustainable production and recycling pathways for electronic components.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101046719
Start date: 01-05-2022
End date: 30-04-2026
Total budget - Public funding: 3 267 127,50 Euro - 3 267 127,00 Euro
Cordis data

Original description

Recently, an entirely novel type of bacteria has been discovered that can guide high electrical currents over centimeter-long distances through long, thin fibers embedded in the cell envelope. Recent studies by PRINGLE consortium members reveal that these protein fibers possess extraordinarRecently, an entirely novel type of bacteria has been discovered that can guide high electrical currents over centimeter-long distances through long, thin fibers embedded in the cell envelope. Recent studies by PRINGLE consortium members reveal that these protein fibers possess extraordinary electrical properties, including an electrical conductivity that exceeds that of any known biological material by orders of magnitude. The ambition of PRINGLE is to unlock the vast technological potential of this newly discovered biomaterial. To this end, we propose to utilize custom-crafted protein structures as elementary active and passive components in a new generation of biocompatible and biodegradable electronic devices. The resulting long-term technological vision is to establish a radically new type of electronics (PROTEONICS) that is entirely bio-based and CO2 neutral, and in which protein components can provide different all types of electronic functionality. PRINGLE will provide the fundamental and technological basis for PROTEONICS by (1) developing fabrication and patterning technologies for proteonic materials and nanostructures, (2) tuning the electronic properties of these proteonic materials in a fit-for-purpose manner, and (3) integrating proteonic materials as functional components into all-protein electronic devices. As such, PRINGLE-based technology could provide a significant breakthrough towards next generation electronics applications in a circular economy, opening entirely new avenues for interfacing biological systems with electronics and allowing completely new sustainable production and recycling pathways for electronic components.

Status

SIGNED

Call topic

HORIZON-EIC-2021-PATHFINDEROPEN-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.3 Innovative Europe
HORIZON.3.1 The European Innovation Council (EIC)
HORIZON.3.1.1 The Pathfinder for Advanced Research
HORIZON-EIC-2021-PATHFINDEROPEN-01
HORIZON-EIC-2021-PATHFINDEROPEN-01-01 EIC Pathfinder Open 2021