Summary
In CANOPIES, our goal is to develop a novel collaborative human-robot paradigm addressing the challenges of Human Robot Interaction and Human-Robot Collaboration in the unstructured highly dynamic outdoor environment of permanent crop farming (Agri-Food Area). Our approach will be demonstrated through an integrated system composed by farming robots and logistics robots with a real-world validation of two economically relevant agronomic operations within a table-grape vineyard: harvesting and pruning. CANOPIES represents the first attempt to introduce a collaborative paradigm in the field of precision agriculture for permanent crops where farmworkers can efficiently work together with teams of robots to perform agronomic interventions, like harvesting or pruning in table-grape vineyards. Both operations require complex processes of perception, communication, shared planning in agreement, prediction of human intentions, interaction and action. But also, both agronomic operations should be done in real life conditions, that is, in changing illumination and cast shadows, changing agronomic situations, where the vine branches or grapes can make it difficult to harvest or prune in a safe manner, due to the robot physical proximity to the human, while operating in real time. CANOPIES ambition will be achieved by introducing: i) novel human-robot interaction methodologies for enhanced safety and coexistence, ii) novel human-robot collaboration methodologies for increased system adaptability and intuitive usability; iii) novel multi-robot coordination methodologies for improved scalability. CANOPIES impact will contribute to filling the current gap in the development of fully autonomous robotic solutions for permanent crops by introducing a novel concept of farming robots, where we leverage an effective interaction with the human workers to mitigate the greater complexity of permanent crops as compared with field crops.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101016906 |
Start date: | 01-01-2021 |
End date: | 31-12-2024 |
Total budget - Public funding: | 6 904 940,00 Euro - 6 904 940,00 Euro |
Cordis data
Original description
In CANOPIES, our goal is to develop a novel collaborative human-robot paradigm addressing the challenges of Human Robot Interaction and Human-Robot Collaboration in the unstructured highly dynamic outdoor environment of permanent crop farming (Agri-Food Area). Our approach will be demonstrated through an integrated system composed by farming robots and logistics robots with a real-world validation of two economically relevant agronomic operations within a table-grape vineyard: harvesting and pruning. CANOPIES represents the first attempt to introduce a collaborative paradigm in the field of precision agriculture for permanent crops where farmworkers can efficiently work together with teams of robots to perform agronomic interventions, like harvesting or pruning in table-grape vineyards. Both operations require complex processes of perception, communication, shared planning in agreement, prediction of human intentions, interaction and action. But also, both agronomic operations should be done in real life conditions, that is, in changing illumination and cast shadows, changing agronomic situations, where the vine branches or grapes can make it difficult to harvest or prune in a safe manner, due to the robot physical proximity to the human, while operating in real time. CANOPIES ambition will be achieved by introducing: i) novel human-robot interaction methodologies for enhanced safety and coexistence, ii) novel human-robot collaboration methodologies for increased system adaptability and intuitive usability; iii) novel multi-robot coordination methodologies for improved scalability. CANOPIES impact will contribute to filling the current gap in the development of fully autonomous robotic solutions for permanent crops by introducing a novel concept of farming robots, where we leverage an effective interaction with the human workers to mitigate the greater complexity of permanent crops as compared with field crops.Status
SIGNEDCall topic
ICT-46-2020Update Date
27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all