SHINTO | Self HealINg soft materials for susTainable prOducts

Summary
The SHINTO project aims to disrupt the soft robotics market by creating a new market for self-healing structural components, introducing autonomous damage detection and healing in intelligent soft robots. The current field is driven by a high adoption of soft grippers that ensure safe operation for collaborative robots in manufacturing and delicate manipulation in agrifood and warehousing. However, these expensive and mostly non-recyclable soft robots have limited lifetimes due to their vulnerability to damage. In symbiosis, VUB-research groups FYSC and Brubotics have been building soft robots out of self-healing materials that fully recover functional material properties and resulting performances after healing incurred damage. This extends the robots service lifetime and raises their reliability and sustainability, which in combination with their inherent recyclability contributes to economic benefits and the EU Green Deal. In SHINTO, technological breakthroughs will mature beyond lab demonstrators over pilot scale towards commercial viability through synergistic advances in (patented) self-healing polymers, manufacturing, application validation and business development. The team combines profound knowledge of materials and robotics scientists with business experts to establish a new deep tech company, marketing next generation self-healing grippers as semi-finished goods. The beach-head strategy targets existing soft robotics markets based on confirmed product-market fits. Existing feedback loops with key industrial partners, field tests and life cycle assessment allow to cocreate the required quality and TRL for business transition, while limiting business risk to a niche market. Parallel, continuous market analysis enables updating/expanding requirements and extending to broader (non-)robotic markets. The soft robotics market is expected to grow at 40%/y to $6.3B by 2027, while market fits beyond this niche are identified, e.g. the tire market at $174B in 2028.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101057960
Start date: 01-10-2022
End date: 30-09-2025
Total budget - Public funding: 2 488 500,00 Euro - 2 488 500,00 Euro
Cordis data

Original description

The SHINTO project aims to disrupt the soft robotics market by creating a new market for self-healing structural components, introducing autonomous damage detection and healing in intelligent soft robots. The current field is driven by a high adoption of soft grippers that ensure safe operation for collaborative robots in manufacturing and delicate manipulation in agrifood and warehousing. However, these expensive and mostly non-recyclable soft robots have limited lifetimes due to their vulnerability to damage. In symbiosis, VUB-research groups FYSC and Brubotics have been building soft robots out of self-healing materials that fully recover functional material properties and resulting performances after healing incurred damage. This extends the robots service lifetime and raises their reliability and sustainability, which in combination with their inherent recyclability contributes to economic benefits and the EU Green Deal. In SHINTO, technological breakthroughs will mature beyond lab demonstrators over pilot scale towards commercial viability through synergistic advances in (patented) self-healing polymers, manufacturing, application validation and business development. The team combines profound knowledge of materials and robotics scientists with business experts to establish a new deep tech company, marketing next generation self-healing grippers as semi-finished goods. The beach-head strategy targets existing soft robotics markets based on confirmed product-market fits. Existing feedback loops with key industrial partners, field tests and life cycle assessment allow to cocreate the required quality and TRL for business transition, while limiting business risk to a niche market. Parallel, continuous market analysis enables updating/expanding requirements and extending to broader (non-)robotic markets. The soft robotics market is expected to grow at 40%/y to $6.3B by 2027, while market fits beyond this niche are identified, e.g. the tire market at $174B in 2028.

Status

SIGNED

Call topic

HORIZON-EIC-2021-TRANSITIONOPEN-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.3 Innovative Europe
HORIZON.3.1 The European Innovation Council (EIC)
HORIZON.3.1.0 Cross-cutting call topics
HORIZON-EIC-2021-TRANSITIONOPEN-01 EIC Transition Open 2021