Summary
EPOCH proposes to develop a novel approach in linking green hydrogen production with the direct loading of liquid organic hydrogen carriers (LOHC) enabling a transformative logistic of green hydrogen distribution and storage. Lignin derivatives are used to be selectively oxidized. Compared to water electrolysis, EPOCH will advance the field by (1) using the nascent hydrogen at the cathode directly to load LOHCs allowing economic H2 storage and transport, and (2) converting at the anode waste lignin and its derivatives via selective oxidation. EPOCH is beyond the state-of-the-art solutions, as it does not form molecular H2 at the cathode nor generates oxygen at the anode. By modifying both cathodic and anodic reactions, EPOCH reduces the energy intensity.
EPOCH will enable better cell performance and enhanced added-value device operations by (i) improving energy efficiency, (ii) allowing cost reductions, and (iii) intensifying the process. The EPOCH device will be designed for flexible integration with biorefineries and pulp & paper industries, to valorize their lignin waste streams, thus, linking these industrial sectors and H2 economy. EPOCH will allow the production of green H2 in areas where renewable energy production (in the energy mix) is higher. Therefore, EPOCH will offer a new path to effectively decrease the carbon footprint of energy-intensive industries.
Development of the novel EPOCH electrocatalytic device requires (a) advanced components (electrocatalysts, electrodes, electrolytes and ionic liquid promoters, membranes) and (b) validation of the full module cell operation at laboratory scale. Thus, our project integrates multidisciplinary top-experts in areas such as electrocatalysis, lignin chemistry, and materials synthesis, with a large engineering company on energy transition and a SME world-leading the LOHC technology development and logistic.
EPOCH will enable better cell performance and enhanced added-value device operations by (i) improving energy efficiency, (ii) allowing cost reductions, and (iii) intensifying the process. The EPOCH device will be designed for flexible integration with biorefineries and pulp & paper industries, to valorize their lignin waste streams, thus, linking these industrial sectors and H2 economy. EPOCH will allow the production of green H2 in areas where renewable energy production (in the energy mix) is higher. Therefore, EPOCH will offer a new path to effectively decrease the carbon footprint of energy-intensive industries.
Development of the novel EPOCH electrocatalytic device requires (a) advanced components (electrocatalysts, electrodes, electrolytes and ionic liquid promoters, membranes) and (b) validation of the full module cell operation at laboratory scale. Thus, our project integrates multidisciplinary top-experts in areas such as electrocatalysis, lignin chemistry, and materials synthesis, with a large engineering company on energy transition and a SME world-leading the LOHC technology development and logistic.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101070976 |
Start date: | 01-10-2022 |
End date: | 30-09-2026 |
Total budget - Public funding: | 3 502 967,50 Euro - 3 502 967,00 Euro |
Cordis data
Original description
EPOCH proposes to develop a novel approach in linking green hydrogen production with the direct loading of liquid organic hydrogen carriers (LOHC) enabling a transformative logistic of green hydrogen distribution and storage. Lignin derivatives are used to be selectively oxidized. Compared to water electrolysis, EPOCH will advance the field by (1) using the nascent hydrogen at the cathode directly to load LOHCs allowing economic H2 storage and transport, and (2) converting at the anode waste lignin and its derivatives via selective oxidation. EPOCH is beyond the state-of-the-art solutions, as it does not form molecular H2 at the cathode nor generates oxygen at the anode. By modifying both cathodic and anodic reactions, EPOCH reduces the energy intensity.EPOCH will enable better cell performance and enhanced added-value device operations by (i) improving energy efficiency, (ii) allowing cost reductions, and (iii) intensifying the process. The EPOCH device will be designed for flexible integration with biorefineries and pulp & paper industries, to valorize their lignin waste streams, thus, linking these industrial sectors and H2 economy. EPOCH will allow the production of green H2 in areas where renewable energy production (in the energy mix) is higher. Therefore, EPOCH will offer a new path to effectively decrease the carbon footprint of energy-intensive industries.
Development of the novel EPOCH electrocatalytic device requires (a) advanced components (electrocatalysts, electrodes, electrolytes and ionic liquid promoters, membranes) and (b) validation of the full module cell operation at laboratory scale. Thus, our project integrates multidisciplinary top-experts in areas such as electrocatalysis, lignin chemistry, and materials synthesis, with a large engineering company on energy transition and a SME world-leading the LOHC technology development and logistic.
Status
SIGNEDCall topic
HORIZON-EIC-2021-PATHFINDERCHALLENGES-01-04Update Date
09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all