DiaDEM | Digital Discovery Platform for Organic Electronics Materials

Summary
We propose to develop and commercialize a digital platform to accelerate the discovery and deployment of molecular materials in the broad sector of organic and printed electronics. This sector, with enormous market potential, is limited by the slow and inefficient development of new materials. Using this platform, functional materials for a specific purpose are discovered through virtual screening with predictions benchmarked against a continuously growing number of experimental data. The technology samples the space of all molecules that are commercially available and their synthetically feasible analogues. The platform provides a one-stop-shop solution from digital discovery to experimental verification by linking the candidates identified via virtual screening with the chemical supply chain and the procurement of such candidates. The size of the chemical space explored, the validation of screening methods against experiments and the link with the supply chain are all unprecedented in organic electronics. This project is brought together by the University of Liverpool, who developed the database and the underlying validation methodology, NANOMATCH, provider of modelling solutions to the organic electronics sector, and MCULE, aggregating one of the largest purchasable chemical spaces for organic compounds
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101057564
Start date: 01-05-2022
End date: 30-04-2025
Total budget - Public funding: 1 294 000,00 Euro - 1 294 000,00 Euro
Cordis data

Original description

We propose to develop and commercialize a digital platform to accelerate the discovery and deployment of molecular materials in the broad sector of organic and printed electronics. This sector, with enormous market potential, is limited by the slow and inefficient development of new materials. Using this platform, functional materials for a specific purpose are discovered through virtual screening with predictions benchmarked against a continuously growing number of experimental data. The technology samples the space of all molecules that are commercially available and their synthetically feasible analogues. The platform provides a one-stop-shop solution from digital discovery to experimental verification by linking the candidates identified via virtual screening with the chemical supply chain and the procurement of such candidates. The size of the chemical space explored, the validation of screening methods against experiments and the link with the supply chain are all unprecedented in organic electronics. This project is brought together by the University of Liverpool, who developed the database and the underlying validation methodology, NANOMATCH, provider of modelling solutions to the organic electronics sector, and MCULE, aggregating one of the largest purchasable chemical spaces for organic compounds

Status

SIGNED

Call topic

HORIZON-EIC-2021-TRANSITIONOPEN-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.3 Innovative Europe
HORIZON.3.1 The European Innovation Council (EIC)
HORIZON.3.1.0 Cross-cutting call topics
HORIZON-EIC-2021-TRANSITIONOPEN-01 EIC Transition Open 2021