PhotoSynH2 | Photosynthetic electron focusing technology for direct efficient biohydrogen production from solar energy

Summary
We propose a disruptive technology based on synthetic biology, we call photosynthetic electron focusing, for the efficient production of hydrogen using low-cost photosynthetic bacteria (cyanobacteria) genetically re-engineered to exclusively direct the solar energy to hydrogen. Through the development of new high-efficiency large-scale photobioreactors we will obtain an unprecedented increase in the energy efficiency up to ten-fold higher than current approaches. Our theoretical estimates for the production costs could be as low as 5€/Kg of H2, making our technology potentially comparable to current photovoltaic coupled to electrolysis. Our bacteria could be adapted and grown in sea water and wastewater. Moreover, it would not require using Critical Raw Materials or toxic processes. Our biological route involves using fermentation-like technologies, with expertise available in many sectors such as the food industry. It will also employ contained bioreactors, constructed with simple fabrication technologies, which are decreasing in cost (e.g., the cost of 3D printing materials is decreasing much faster than the cost of microfabrication). We will validate our engineered cyanobacterium in a custom 1,300 L photobioreactor, which will be able to produce validated innovative green H2 production technology. This proof-of-concept production will be located in a hydrogen industrial stakeholder to ensure the large-scale relevance of our production.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101070948
Start date: 01-10-2022
End date: 30-09-2027
Total budget - Public funding: 4 194 947,63 Euro - 4 194 947,00 Euro
Cordis data

Original description

We propose a disruptive technology based on synthetic biology, we call photosynthetic electron focusing, for the efficient production of hydrogen using low-cost photosynthetic bacteria (cyanobacteria) genetically re-engineered to exclusively direct the solar energy to hydrogen. Through the development of new high-efficiency large-scale photobioreactors we will obtain an unprecedented increase in the energy efficiency up to ten-fold higher than current approaches. Our theoretical estimates for the production costs could be as low as 5€/Kg of H2, making our technology potentially comparable to current photovoltaic coupled to electrolysis. Our bacteria could be adapted and grown in sea water and wastewater. Moreover, it would not require using Critical Raw Materials or toxic processes. Our biological route involves using fermentation-like technologies, with expertise available in many sectors such as the food industry. It will also employ contained bioreactors, constructed with simple fabrication technologies, which are decreasing in cost (e.g., the cost of 3D printing materials is decreasing much faster than the cost of microfabrication). We will validate our engineered cyanobacterium in a custom 1,300 L photobioreactor, which will be able to produce validated innovative green H2 production technology. This proof-of-concept production will be located in a hydrogen industrial stakeholder to ensure the large-scale relevance of our production.

Status

SIGNED

Call topic

HORIZON-EIC-2021-PATHFINDERCHALLENGES-01-04

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.3 Innovative Europe
HORIZON.3.1 The European Innovation Council (EIC)
HORIZON.3.1.0 Cross-cutting call topics
HORIZON-EIC-2021-PATHFINDERCHALLENGES-01
HORIZON-EIC-2021-PATHFINDERCHALLENGES-01-04 Novel routes to green hydrogen production
HORIZON-EIC-2021-PATHFINDERCHALLENGES-01
HORIZON-EIC-2021-PATHFINDERCHALLENGES-01-04 Novel routes to green hydrogen production