Summary
Autologous immunotherapies have revolutionised cancer treatment providing impressive survival benefits in patients with blood cancers. The next generation of personalised immunotherapies using tumour-infiltrating lymphocytes (TIL) aims to overcome efficacy limitations of CAR-T therapies in the treatment of solid tumours. Lack of effective, fast, adaptive, controllable and scalable manufacturing process remains one of the critical bottlenecks for clinical adoption of such complex personalised cell therapies.
In the SMARTER project, Achilles Therapeutics UK Limited, a clinical-stage company developing autologous cell therapies, partners with the centre of excellence for Cell and Gene Therapy Catapult and academic experts in process biomarker discovery (Instituto de Investigacion Sanitaria La Fe) and bioprocess sensor development (Leibniz Universitat Hannover). The consortium aims to develop a first-in-class, smart bioprocessing manufacturing platform for personalised autologous cell therapies, implementing for the first time in-line process analytical technologies and smart process control systems. The project exploits breakthrough discoveries of novel T cell expansion process biomarkers and development of new fluorescence spectroscopy sensors for real-time monitoring of critical process parameters, toa enable adaptive process control of the precision TIL biomanufacturing process. After the project, the prototype R&D platform will be ready for follow-up development of the commercial scale bioreactor in GMP environment.
The SMARTER platform will critically improve production efficiency, reduce overall costs-of-goods, shorten manufacturing cycle times (shorter vein-to-vein time), decrease batch failures and lead to more consistent and predictable cell therapy product quality. Finally, the innovations will enable clinical implementation of a potential breakthrough personalised adoptive cell therapy for hardest-to-treat solid tumours such as lung cancer and melanoma.
In the SMARTER project, Achilles Therapeutics UK Limited, a clinical-stage company developing autologous cell therapies, partners with the centre of excellence for Cell and Gene Therapy Catapult and academic experts in process biomarker discovery (Instituto de Investigacion Sanitaria La Fe) and bioprocess sensor development (Leibniz Universitat Hannover). The consortium aims to develop a first-in-class, smart bioprocessing manufacturing platform for personalised autologous cell therapies, implementing for the first time in-line process analytical technologies and smart process control systems. The project exploits breakthrough discoveries of novel T cell expansion process biomarkers and development of new fluorescence spectroscopy sensors for real-time monitoring of critical process parameters, toa enable adaptive process control of the precision TIL biomanufacturing process. After the project, the prototype R&D platform will be ready for follow-up development of the commercial scale bioreactor in GMP environment.
The SMARTER platform will critically improve production efficiency, reduce overall costs-of-goods, shorten manufacturing cycle times (shorter vein-to-vein time), decrease batch failures and lead to more consistent and predictable cell therapy product quality. Finally, the innovations will enable clinical implementation of a potential breakthrough personalised adoptive cell therapy for hardest-to-treat solid tumours such as lung cancer and melanoma.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101071054 |
Start date: | 01-09-2022 |
End date: | 31-08-2025 |
Total budget - Public funding: | 1 364 281,25 Euro - 1 364 281,00 Euro |
Cordis data
Original description
Autologous immunotherapies have revolutionised cancer treatment providing impressive survival benefits in patients with blood cancers. The next generation of personalised immunotherapies using tumour-infiltrating lymphocytes (TIL) aims to overcome efficacy limitations of CAR-T therapies in the treatment of solid tumours. Lack of effective, fast, adaptive, controllable and scalable manufacturing process remains one of the critical bottlenecks for clinical adoption of such complex personalised cell therapies.In the SMARTER project, Achilles Therapeutics UK Limited, a clinical-stage company developing autologous cell therapies, partners with the centre of excellence for Cell and Gene Therapy Catapult and academic experts in process biomarker discovery (Instituto de Investigacion Sanitaria La Fe) and bioprocess sensor development (Leibniz Universitat Hannover). The consortium aims to develop a first-in-class, smart bioprocessing manufacturing platform for personalised autologous cell therapies, implementing for the first time in-line process analytical technologies and smart process control systems. The project exploits breakthrough discoveries of novel T cell expansion process biomarkers and development of new fluorescence spectroscopy sensors for real-time monitoring of critical process parameters, toa enable adaptive process control of the precision TIL biomanufacturing process. After the project, the prototype R&D platform will be ready for follow-up development of the commercial scale bioreactor in GMP environment.
The SMARTER platform will critically improve production efficiency, reduce overall costs-of-goods, shorten manufacturing cycle times (shorter vein-to-vein time), decrease batch failures and lead to more consistent and predictable cell therapy product quality. Finally, the innovations will enable clinical implementation of a potential breakthrough personalised adoptive cell therapy for hardest-to-treat solid tumours such as lung cancer and melanoma.
Status
SIGNEDCall topic
HORIZON-EIC-2021-PATHFINDERCHALLENGES-01-03Update Date
09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all