Summary
Chirality is one of the most intriguing fundamental phenomena in nature. Materials composed of chiral molecules find broad applications in areas ranging from nonlinear optics and spintronics to biology and pharmaceuticals. However, chirality is usually an invariable inherent property of a given material that cannot be easily changed at will. Very recently we discovered that chiral structure emerges as a basic configuration of polarization field in ferroelectric nanoparticles and nanodots in a form of stable fundamental topological excitations of polarization, Hopfions, and skyrmions, and, importantly, can be controlled and switched by cleverly devised field-temperature protocols.
The key idea of the project is to reveal how this discovered emerging topological chirality will be identified, measured, explored, and put in practice, using the unique facilities and excellence of Jozef Stefan Institute in Slovenia. Accordingly, the research objectives of the FerroChiral MSCA are defined as follows:
- To optimize fabrication parameters enabling the engineering of ferroelectric nanostructures with desirable chiral properties.
- To develop research approaches for revealing and exploring the topological structures of the ferroelectric nanostructures.
- To devise efficient enantioselective procedures and elaborate effective methods for chirality revealing and operation.
The new skills in nanomaterial fabrication and operation, and in building the academia-industry links will be developed for further career pursuit. Also, the project will cluster the FerroChiral action with the complimentary European networks in view of prospective developing long-lasting collaborations.
The key idea of the project is to reveal how this discovered emerging topological chirality will be identified, measured, explored, and put in practice, using the unique facilities and excellence of Jozef Stefan Institute in Slovenia. Accordingly, the research objectives of the FerroChiral MSCA are defined as follows:
- To optimize fabrication parameters enabling the engineering of ferroelectric nanostructures with desirable chiral properties.
- To develop research approaches for revealing and exploring the topological structures of the ferroelectric nanostructures.
- To devise efficient enantioselective procedures and elaborate effective methods for chirality revealing and operation.
The new skills in nanomaterial fabrication and operation, and in building the academia-industry links will be developed for further career pursuit. Also, the project will cluster the FerroChiral action with the complimentary European networks in view of prospective developing long-lasting collaborations.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101090285 |
Start date: | 01-10-2022 |
End date: | 30-09-2024 |
Total budget - Public funding: | - 171 399,00 Euro |
Cordis data
Original description
Chirality is one of the most intriguing fundamental phenomena in nature. Materials composed of chiral molecules find broad applications in areas ranging from nonlinear optics and spintronics to biology and pharmaceuticals. However, chirality is usually an invariable inherent property of a given material that cannot be easily changed at will. Very recently we discovered that chiral structure emerges as a basic configuration of polarization field in ferroelectric nanoparticles and nanodots in a form of stable fundamental topological excitations of polarization, Hopfions, and skyrmions, and, importantly, can be controlled and switched by cleverly devised field-temperature protocols.The key idea of the project is to reveal how this discovered emerging topological chirality will be identified, measured, explored, and put in practice, using the unique facilities and excellence of Jozef Stefan Institute in Slovenia. Accordingly, the research objectives of the FerroChiral MSCA are defined as follows:
- To optimize fabrication parameters enabling the engineering of ferroelectric nanostructures with desirable chiral properties.
- To develop research approaches for revealing and exploring the topological structures of the ferroelectric nanostructures.
- To devise efficient enantioselective procedures and elaborate effective methods for chirality revealing and operation.
The new skills in nanomaterial fabrication and operation, and in building the academia-industry links will be developed for further career pursuit. Also, the project will cluster the FerroChiral action with the complimentary European networks in view of prospective developing long-lasting collaborations.
Status
SIGNEDCall topic
HORIZON-WIDERA-2022-TALENTS-02-01Update Date
09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all